preprocess_data.py 6.54 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import logging
import time
import os
import argparse

import torch
from torch.utils.data import DataLoader

from seq2seq.data.tokenizer import Tokenizer
import seq2seq.data.config as config
import seq2seq.utils as utils
from seq2seq.data.dataset import LazyParallelDataset
from seq2seq.data.dataset import PreprocessedDataset


def parse_args():
    parser = argparse.ArgumentParser(
        description='GNMT prepare data',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument('--dataset-dir', default='data/wmt16_de_en',
                        help='path to the directory with training/test data')
    parser.add_argument('--preproc-data-dir', default='/tmp/preprocessed',
                        help='path to the directory with preprocessed \
                        training/test data')
    parser.add_argument('--max-size', default=None, type=int,
                        help='use at most MAX_SIZE elements from training \
                         dataset (useful for benchmarking), by default \
                         uses entire dataset')

    parser.add_argument('--math', default='fp32',
                        choices=['fp32', 'fp16'],
                        help='arithmetic type')

    parser.add_argument('--max-length-train', default=50, type=int,
                        help='maximum sequence length for training \
                        (including special BOS and EOS tokens)')
    parser.add_argument('--min-length-train', default=0, type=int,
                        help='minimum sequence length for training \
                        (including special BOS and EOS tokens)')

    parser.add_argument('--rank', default=0, type=int,
                        help='global rank of the process, do not set!')
    parser.add_argument('--local_rank', default=os.getenv('LOCAL_RANK', 0), type=int,
                        help='local rank of the process, do not set!')

    args = parser.parse_args()
    return args


def build_collate_fn(max_seq_len, parallel=True):
    def collate_seq(seq):
        lengths = torch.tensor([len(s) for s in seq])
        batch_length = max_seq_len

        shape = (len(seq), batch_length)
        seq_tensor = torch.full(shape, config.PAD, dtype=torch.int64)

        for i, s in enumerate(seq):
            end_seq = lengths[i]
            seq_tensor[i, :end_seq].copy_(s[:end_seq])

        return (seq_tensor, lengths)

    def parallel_collate(seqs):
        src_seqs, tgt_seqs = zip(*seqs)
        return tuple([collate_seq(s) for s in [src_seqs, tgt_seqs]])

    return parallel_collate


def load_dataset(tokenizer, args):
    train_data = LazyParallelDataset(
        src_fname=os.path.join(args.dataset_dir, config.SRC_TRAIN_FNAME),
        tgt_fname=os.path.join(args.dataset_dir, config.TGT_TRAIN_FNAME),
        tokenizer=tokenizer,
        min_len=args.min_length_train,
        max_len=args.max_length_train,
        sort=False,
        max_size=args.max_size)

    collate_fn = build_collate_fn(max_seq_len=args.max_length_train,
                                  parallel=True)

    loader = DataLoader(train_data,
                        batch_size=1024,
                        collate_fn=collate_fn,
                        num_workers=min(os.cpu_count(), 16),
                        timeout=120,
                        drop_last=False)

    srcs = []
    tgts = []
    src_lengths = []
    tgt_lengths = []

    for (src, src_len), (tgt, tgt_len) in loader:
        src_lengths.append(src_len)
        tgt_lengths.append(tgt_len)
        srcs.append(src)
        tgts.append(tgt)

    srcs = torch.cat(srcs)
    tgts = torch.cat(tgts)
    src_lengths = torch.cat(src_lengths)
    tgt_lengths = torch.cat(tgt_lengths)

    return srcs, tgts, src_lengths, tgt_lengths


def broadcast_dataset(world_size, rank, max_length_train, srcs, tgts,
        src_lengths, tgt_lengths):
    assert world_size > 1

    # Broadcast preprocessed dataset length
    if rank == 0:
        sizes = torch.tensor(src_lengths.shape, device='cuda',
            dtype=torch.int64)
    else:
        sizes = torch.zeros((1,), device='cuda', dtype=torch.int64)

    torch.distributed.broadcast(sizes, 0)
    nsamples = sizes.item()

    # Prepare tensor for receving preprocessed dataset
    if rank == 0:
        srcs_cuda, tgts_cuda, src_lengths_cuda, tgt_lengths_cuda = \
            srcs.cuda(), tgts.cuda(), src_lengths.cuda(), tgt_lengths.cuda()
    else:
        srcs_cuda = torch.empty((nsamples, max_length_train),
            device='cuda', dtype=torch.int64)
        tgts_cuda = torch.empty((nsamples, max_length_train),
            device='cuda', dtype=torch.int64)
        src_lengths_cuda = torch.empty((nsamples,), device='cuda',
            dtype=torch.int64)
        tgt_lengths_cuda = torch.empty((nsamples,), device='cuda',
            dtype=torch.int64)

    # Broadcast preprocessed dataset
    torch.distributed.broadcast(srcs_cuda, 0)
    torch.distributed.broadcast(tgts_cuda, 0)
    torch.distributed.broadcast(src_lengths_cuda, 0)
    torch.distributed.broadcast(tgt_lengths_cuda, 0)

    if rank > 0:
        srcs, tgts, src_lengths, tgt_lengths = srcs_cuda.cpu(), \
            tgts_cuda.cpu(), src_lengths_cuda.cpu(), tgt_lengths_cuda.cpu()

    return srcs, tgts, src_lengths, tgt_lengths


def main():
    args = parse_args()

    use_cuda = True
    device = utils.set_device(use_cuda, args.local_rank)
    distributed = utils.init_distributed(use_cuda)
    rank = utils.get_rank()
    world_size = utils.get_world_size()

    utils.setup_logging()
    logging.info(f'Run arguments: {args}')

    pad_vocab = utils.pad_vocabulary(args.math)
    tokenizer = Tokenizer(os.path.join(args.dataset_dir, config.VOCAB_FNAME),
                          pad_vocab)

    # Pre-process dataset only on master node
    if rank == 0:
        srcs, tgts, src_lengths, tgt_lengths = load_dataset(tokenizer, args)
    else:
        srcs, tgts, src_lengths, tgt_lengths = None, None, None, None
        time.sleep(30)

    # Broadcast preprocessed dataset to other ranks
    if world_size > 1:
        srcs, tgts, src_lengths, tgt_lengths = broadcast_dataset(
            world_size, rank, args.max_length_train,
            srcs, tgts, src_lengths, tgt_lengths)

    preproc_train_data = PreprocessedDataset(
        min_len=args.min_length_train,
        max_len=args.max_length_train,
        vocab_size=tokenizer.vocab_size,
        )
    os.makedirs(args.preproc_data_dir, exist_ok=True)
    preproc_train_data.write_data(
        os.path.join(args.preproc_data_dir, 'training.bin'),
        (srcs, src_lengths),
        (tgts, tgt_lengths),
        )


if __name__ == "__main__":
    main()