box_matcher_test.py 4.79 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tensorflow as tf

from keras_cv.ops.box_matcher import ArgmaxBoxMatcher


class ArgmaxBoxMatcherTest(tf.test.TestCase):
    def test_box_matcher_invalid_length(self):
        fg_threshold = 0.5
        bg_thresh_hi = 0.2
        bg_thresh_lo = 0.0

        with self.assertRaisesRegex(ValueError, "must be len"):
            _ = ArgmaxBoxMatcher(
                thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold],
                match_values=[-3, -2, -1],
            )

    def test_box_matcher_unsorted_thresholds(self):
        fg_threshold = 0.5
        bg_thresh_hi = 0.2
        bg_thresh_lo = 0.0

        with self.assertRaisesRegex(ValueError, "must be sorted"):
            _ = ArgmaxBoxMatcher(
                thresholds=[bg_thresh_hi, bg_thresh_lo, fg_threshold],
                match_values=[-3, -2, -1, 1],
            )

    def test_box_matcher_unbatched(self):
        sim_matrix = tf.constant([[0.04, 0, 0, 0], [0, 0, 1.0, 0]], dtype=tf.float32)

        fg_threshold = 0.5
        bg_thresh_hi = 0.2
        bg_thresh_lo = 0.0

        matcher = ArgmaxBoxMatcher(
            thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold],
            match_values=[-3, -2, -1, 1],
        )
        match_indices, matched_values = matcher(sim_matrix)
        positive_matches = tf.greater_equal(matched_values, 0)
        negative_matches = tf.equal(matched_values, -2)

        self.assertAllEqual(positive_matches.numpy(), [False, True])
        self.assertAllEqual(negative_matches.numpy(), [True, False])
        self.assertAllEqual(match_indices.numpy(), [0, 2])
        self.assertAllEqual(matched_values.numpy(), [-2, 1])

    def test_box_matcher_batched(self):
        sim_matrix = tf.constant([[[0.04, 0, 0, 0], [0, 0, 1.0, 0]]], dtype=tf.float32)

        fg_threshold = 0.5
        bg_thresh_hi = 0.2
        bg_thresh_lo = 0.0

        matcher = ArgmaxBoxMatcher(
            thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold],
            match_values=[-3, -2, -1, 1],
        )
        match_indices, matched_values = matcher(sim_matrix)
        positive_matches = tf.greater_equal(matched_values, 0)
        negative_matches = tf.equal(matched_values, -2)

        self.assertAllEqual(positive_matches.numpy(), [[False, True]])
        self.assertAllEqual(negative_matches.numpy(), [[True, False]])
        self.assertAllEqual(match_indices.numpy(), [[0, 2]])
        self.assertAllEqual(matched_values.numpy(), [[-2, 1]])

    def test_box_matcher_force_match(self):
        sim_matrix = tf.constant(
            [[0, 0.04, 0, 0.1], [0, 0, 1.0, 0], [0.1, 0, 0, 0], [0, 0, 0, 0.6]],
            dtype=tf.float32,
        )

        fg_threshold = 0.5
        bg_thresh_hi = 0.2
        bg_thresh_lo = 0.0

        matcher = ArgmaxBoxMatcher(
            thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold],
            match_values=[-3, -2, -1, 1],
            force_match_for_each_col=True,
        )
        match_indices, matched_values = matcher(sim_matrix)
        positive_matches = tf.greater_equal(matched_values, 0)
        negative_matches = tf.equal(matched_values, -2)

        self.assertAllEqual(positive_matches.numpy(), [True, True, True, True])
        self.assertAllEqual(negative_matches.numpy(), [False, False, False, False])
        # the first anchor cannot be matched to 4th gt box given that is matched to
        # the last anchor.
        self.assertAllEqual(match_indices.numpy(), [1, 2, 0, 3])
        self.assertAllEqual(matched_values.numpy(), [1, 1, 1, 1])

    def test_box_matcher_empty_gt_boxes(self):
        sim_matrix = tf.constant([[], []], dtype=tf.float32)

        fg_threshold = 0.5
        bg_thresh_hi = 0.2
        bg_thresh_lo = 0.0

        matcher = ArgmaxBoxMatcher(
            thresholds=[bg_thresh_lo, bg_thresh_hi, fg_threshold],
            match_values=[-3, -2, -1, 1],
        )
        match_indices, matched_values = matcher(sim_matrix)
        positive_matches = tf.greater_equal(matched_values, 0)
        ignore_matches = tf.equal(matched_values, -1)

        self.assertAllEqual(positive_matches.numpy(), [False, False])
        self.assertAllEqual(ignore_matches.numpy(), [True, True])
        self.assertAllEqual(match_indices.numpy(), [0, 0])
        self.assertAllEqual(matched_values.numpy(), [-1, -1])