random_cutout.py 6.75 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf

from keras_cv.layers.preprocessing.base_image_augmentation_layer import (
    BaseImageAugmentationLayer,
)
from keras_cv.utils import fill_utils
from keras_cv.utils import preprocessing


@tf.keras.utils.register_keras_serializable(package="keras_cv")
class RandomCutout(BaseImageAugmentationLayer):
    """Randomly cut out rectangles from images and fill them.

    Args:
        height_factor: A tuple of two floats, a single float or a
            `keras_cv.FactorSampler`.  `height_factor` controls the size of the
            cutouts. `height_factor=0.0` means the rectangle will be of size 0% of the
            image height, `height_factor=0.1` means the rectangle will have a size of
            10% of the image height, and so forth.
            Values should be between `0.0` and `1.0`.  If a tuple is used, a
            `height_factor` is sampled between the two values for every image augmented.
            If a single float is used, a value between `0.0` and the passed float is
            sampled.  In order to ensure the value is always the same, please pass a
            tuple with two identical floats: `(0.5, 0.5)`.
        width_factor: A tuple of two floats, a single float or a
            `keras_cv.FactorSampler`.  `width_factor` controls the size of the
            cutouts. `width_factor=0.0` means the rectangle will be of size 0% of the
            image height, `width_factor=0.1` means the rectangle will have a size of 10%
            of the image width, and so forth.
            Values should be between `0.0` and `1.0`.  If a tuple is used, a
            `width_factor` is sampled between the two values for every image augmented.
            If a single float is used, a value between `0.0` and the passed float is
            sampled.  In order to ensure the value is always the same, please pass a
            tuple with two identical floats: `(0.5, 0.5)`.
        fill_mode: Pixels inside the patches are filled according to the given
            mode (one of `{"constant", "gaussian_noise"}`).
            - *constant*: Pixels are filled with the same constant value.
            - *gaussian_noise*: Pixels are filled with random gaussian noise.
        fill_value: a float represents the value to be filled inside the patches
            when `fill_mode="constant"`.
        seed: Integer. Used to create a random seed.

    Sample usage:
    ```python
    (images, labels), _ = tf.keras.datasets.cifar10.load_data()
    random_cutout = keras_cv.layers.preprocessing.RandomCutout(0.5, 0.5)
    augmented_images = random_cutout(images)
    ```
    """

    def __init__(
        self,
        height_factor,
        width_factor,
        fill_mode="constant",
        fill_value=0.0,
        seed=None,
        **kwargs,
    ):
        super().__init__(seed=seed, **kwargs)

        self.height_factor = preprocessing.parse_factor(
            height_factor, param_name="height_factor", seed=seed
        )
        self.width_factor = preprocessing.parse_factor(
            width_factor, param_name="width_factor", seed=seed
        )
        self.fill_mode = fill_mode
        self.fill_value = fill_value
        self.seed = seed

        if fill_mode not in ["gaussian_noise", "constant"]:
            raise ValueError(
                '`fill_mode` should be "gaussian_noise" '
                f'or "constant".  Got `fill_mode`={fill_mode}'
            )

    def _parse_bounds(self, factor):
        if isinstance(factor, (tuple, list)):
            return factor[0], factor[1]
        else:
            return type(factor)(0), factor

    def get_random_transformation(self, image=None, **kwargs):
        center_x, center_y = self._compute_rectangle_position(image)
        rectangle_height, rectangle_width = self._compute_rectangle_size(image)
        return center_x, center_y, rectangle_height, rectangle_width

    def augment_image(self, image, transformation=None, **kwargs):
        """Apply random cutout."""
        inputs = tf.expand_dims(image, 0)
        center_x, center_y, rectangle_height, rectangle_width = transformation

        rectangle_fill = self._compute_rectangle_fill(inputs)
        inputs = fill_utils.fill_rectangle(
            inputs,
            center_x,
            center_y,
            rectangle_width,
            rectangle_height,
            rectangle_fill,
        )
        return inputs[0]

    def augment_label(self, label, transformation=None, **kwargs):
        return label

    def _compute_rectangle_position(self, inputs):
        input_shape = tf.shape(inputs)
        image_height, image_width = (
            input_shape[0],
            input_shape[1],
        )
        center_x = self._random_generator.random_uniform(
            [1], 0, image_width, dtype=tf.int32
        )
        center_y = self._random_generator.random_uniform(
            [1], 0, image_height, dtype=tf.int32
        )
        return center_x, center_y

    def _compute_rectangle_size(self, inputs):
        input_shape = tf.shape(inputs)
        image_height, image_width = (
            input_shape[0],
            input_shape[1],
        )
        height = self.height_factor()
        width = self.width_factor()

        height = height * tf.cast(image_height, tf.float32)
        width = width * tf.cast(image_width, tf.float32)

        height = tf.cast(tf.math.ceil(height), tf.int32)
        width = tf.cast(tf.math.ceil(width), tf.int32)

        height = tf.minimum(height, image_height)
        width = tf.minimum(width, image_width)

        return tf.expand_dims(height, axis=0), tf.expand_dims(width, axis=0)

    def _compute_rectangle_fill(self, inputs):
        input_shape = tf.shape(inputs)
        if self.fill_mode == "constant":
            fill_value = tf.fill(input_shape, self.fill_value)
        else:
            # gaussian noise
            fill_value = tf.random.normal(input_shape)

        return fill_value

    def get_config(self):
        config = {
            "height_factor": self.height_factor,
            "width_factor": self.width_factor,
            "fill_mode": self.fill_mode,
            "fill_value": self.fill_value,
            "seed": self.seed,
        }
        base_config = super().get_config()
        return dict(list(base_config.items()) + list(config.items()))