"research/sequence_projection/sgnn/sgnn_projection.cc" did not exist on "67efd3ab13a64afcba06893151859ed2fcc04a38"
mix_up.py 5.23 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf

from keras_cv.layers.preprocessing.base_image_augmentation_layer import (
    BaseImageAugmentationLayer,
)


@tf.keras.utils.register_keras_serializable(package="keras_cv")
class MixUp(BaseImageAugmentationLayer):
    """MixUp implements the MixUp data augmentation technique.

    Args:
        alpha: Float between 0 and 1.  Inverse scale parameter for the gamma
            distribution.  This controls the shape of the distribution from which the
            smoothing values are sampled.  Defaults 0.2, which is a recommended value
            when training an imagenet1k classification model.
        seed: Integer. Used to create a random seed.

    References:
        - [MixUp paper](https://arxiv.org/abs/1710.09412).
        - [MixUp for Object Detection paper](https://arxiv.org/pdf/1902.04103).

    Sample usage:
    ```python
    (images, labels), _ = tf.keras.datasets.cifar10.load_data()
    mixup = keras_cv.layers.preprocessing.MixUp(10)
    augmented_images, updated_labels = mixup({'images': images, 'labels': labels})
    # output == {'images': updated_images, 'labels': updated_labels}
    ```
    """

    def __init__(self, alpha=0.2, seed=None, **kwargs):
        super().__init__(seed=seed, **kwargs)
        self.alpha = alpha
        self.seed = seed

    def _sample_from_beta(self, alpha, beta, shape):
        sample_alpha = tf.random.gamma(
            shape, 1.0, beta=alpha, seed=self._random_generator.make_legacy_seed()
        )
        sample_beta = tf.random.gamma(
            shape, 1.0, beta=beta, seed=self._random_generator.make_legacy_seed()
        )
        return sample_alpha / (sample_alpha + sample_beta)

    def _batch_augment(self, inputs):
        self._validate_inputs(inputs)
        images = inputs.get("images", None)
        labels = inputs.get("labels", None)
        bounding_boxes = inputs.get("bounding_boxes", None)
        images, lambda_sample, permutation_order = self._mixup(images)
        if labels is not None:
            labels = self._update_labels(labels, lambda_sample, permutation_order)
            inputs["labels"] = labels
        if bounding_boxes is not None:
            bounding_boxes = self._update_bounding_boxes(
                bounding_boxes, permutation_order
            )
            inputs["bounding_boxes"] = bounding_boxes
        inputs["images"] = images
        return inputs

    def _augment(self, inputs):
        raise ValueError(
            "MixUp received a single image to `call`.  The layer relies on "
            "combining multiple examples, and as such will not behave as "
            "expected.  Please call the layer with 2 or more samples."
        )

    def _mixup(self, images):
        batch_size = tf.shape(images)[0]
        permutation_order = tf.random.shuffle(tf.range(0, batch_size), seed=self.seed)

        lambda_sample = self._sample_from_beta(self.alpha, self.alpha, (batch_size,))
        lambda_sample = tf.reshape(lambda_sample, [-1, 1, 1, 1])

        mixup_images = tf.gather(images, permutation_order)
        images = lambda_sample * images + (1.0 - lambda_sample) * mixup_images

        return images, tf.squeeze(lambda_sample), permutation_order

    def _update_labels(self, labels, lambda_sample, permutation_order):
        labels_for_mixup = tf.gather(labels, permutation_order)

        lambda_sample = tf.reshape(lambda_sample, [-1, 1])
        labels = lambda_sample * labels + (1.0 - lambda_sample) * labels_for_mixup

        return labels

    def _update_bounding_boxes(self, bounding_boxes, permutation_order):
        boxes_for_mixup = tf.gather(bounding_boxes, permutation_order)
        bounding_boxes = tf.concat([bounding_boxes, boxes_for_mixup], axis=1)

        return bounding_boxes

    def _validate_inputs(self, inputs):
        images = inputs.get("images", None)
        labels = inputs.get("labels", None)
        bounding_boxes = inputs.get("bounding_boxes", None)
        if images is None or (labels is None and bounding_boxes is None):
            raise ValueError(
                "MixUp expects inputs in a dictionary with format "
                '{"images": images, "labels": labels}. or'
                '{"images": images, "bounding_boxes": bounding_boxes}'
                f"Got: inputs = {inputs}"
            )
        if labels is not None and not labels.dtype.is_floating:
            raise ValueError(
                f"MixUp received labels with type {labels.dtype}. "
                "Labels must be of type float."
            )

    def get_config(self):
        config = {
            "alpha": self.alpha,
            "seed": self.seed,
        }
        base_config = super().get_config()
        return dict(list(base_config.items()) + list(config.items()))