grid_mask.py 9.36 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tensorflow as tf
from tensorflow.keras import layers

from keras_cv import core
from keras_cv.layers.preprocessing.base_image_augmentation_layer import (
    BaseImageAugmentationLayer,
)
from keras_cv.utils import fill_utils
from keras_cv.utils import preprocessing


def _center_crop(mask, width, height):
    masks_shape = tf.shape(mask)
    h_diff = masks_shape[0] - height
    w_diff = masks_shape[1] - width

    h_start = tf.cast(h_diff / 2, tf.int32)
    w_start = tf.cast(w_diff / 2, tf.int32)
    return tf.image.crop_to_bounding_box(mask, h_start, w_start, height, width)


@tf.keras.utils.register_keras_serializable(package="keras_cv")
class GridMask(BaseImageAugmentationLayer):
    """GridMask class for grid-mask augmentation.


    Input shape:
        Int or float tensor with values in the range [0, 255].
        3D (unbatched) or 4D (batched) tensor with shape:
        `(..., height, width, channels)`, in `"channels_last"` format
    Output shape:
        3D (unbatched) or 4D (batched) tensor with shape:
        `(..., height, width, channels)`, in `"channels_last"` format

    Args:
        ratio_factor: A float, tuple of two floats, or `keras_cv.FactorSampler`.
            Ratio determines the ratio from spacings to grid masks.
            Lower values make the grid
            size smaller, and higher values make the grid mask large.
            Floats should be in the range [0, 1].  0.5 indicates that grid and
            spacing will be of equal size. To always use the same value, pass a
            `keras_cv.ConstantFactorSampler()`.

            Defaults to `(0, 0.5)`.
        rotation_factor:
            The rotation_factor will be used to randomly rotate the grid_mask during
            training. Default to 0.1, which results in an output rotating by a
            random amount in the range [-10% * 2pi, 10% * 2pi].

            A float represented as fraction of 2 Pi, or a tuple of size 2
            representing lower and upper bound for rotating clockwise and
            counter-clockwise. A positive values means rotating counter clock-wise,
            while a negative value means clock-wise. When represented as a single
            float, this value is used for both the upper and lower bound. For
            instance, factor=(-0.2, 0.3) results in an output rotation by a random
            amount in the range [-20% * 2pi, 30% * 2pi]. factor=0.2 results in an
            output rotating by a random amount in the range [-20% * 2pi, 20% * 2pi].

        fill_mode: Pixels inside the gridblock are filled according to the given
            mode (one of `{"constant", "gaussian_noise"}`). Default: "constant".
            - *constant*: Pixels are filled with the same constant value.
            - *gaussian_noise*: Pixels are filled with random gaussian noise.
        fill_value: an integer represents of value to be filled inside the gridblock
            when `fill_mode="constant"`. Valid integer range [0 to 255]
        seed: Integer. Used to create a random seed.

    Usage:
    ```python
    (images, labels), _ = tf.keras.datasets.cifar10.load_data()
    random_gridmask = keras_cv.layers.preprocessing.GridMask()
    augmented_images = random_gridmask(images)
    ```

    References:
        - [GridMask paper](https://arxiv.org/abs/2001.04086)
    """

    def __init__(
        self,
        ratio_factor=(0, 0.5),
        rotation_factor=0.15,
        fill_mode="constant",
        fill_value=0.0,
        seed=None,
        **kwargs,
    ):
        super().__init__(seed=seed, **kwargs)
        self.ratio_factor = preprocessing.parse_factor(
            ratio_factor, param_name="ratio_factor"
        )

        if isinstance(rotation_factor, core.FactorSampler):
            raise ValueError(
                "Currently `GridMask.rotation_factor` does not support the "
                "`FactorSampler` API.  This will be supported in the next Keras "
                "release. For now, please pass a float for the "
                "`rotation_factor` argument."
            )

        self.fill_mode = fill_mode
        self.fill_value = fill_value
        self.rotation_factor = rotation_factor
        self.random_rotate = layers.RandomRotation(
            factor=rotation_factor,
            fill_mode="constant",
            fill_value=0.0,
            seed=seed,
        )
        self.auto_vectorize = False
        self._check_parameter_values()
        self.seed = seed

    def _check_parameter_values(self):
        fill_mode, fill_value = self.fill_mode, self.fill_value

        if fill_value not in range(0, 256):
            raise ValueError(
                f"fill_value should be in the range [0, 255]. Got {fill_value}"
            )

        if fill_mode not in ["constant", "gaussian_noise", "random"]:
            raise ValueError(
                '`fill_mode` should be "constant", '
                f'"gaussian_noise", or "random".  Got `fill_mode`={fill_mode}'
            )

    def get_random_transformation(
        self, image=None, label=None, bounding_boxes=None, **kwargs
    ):
        ratio = self.ratio_factor()

        # compute grid mask
        input_shape = tf.shape(image)
        mask = self._compute_grid_mask(input_shape, ratio=ratio)

        # convert mask to single-channel image
        mask = tf.cast(mask, tf.float32)
        mask = tf.expand_dims(mask, axis=-1)

        # randomly rotate mask
        mask = self.random_rotate(mask)

        # compute fill
        if self.fill_mode == "constant":
            fill_value = tf.fill(input_shape, self.fill_value)
        else:
            # gaussian noise
            fill_value = self._random_generator.random_normal(
                shape=input_shape, dtype=image.dtype
            )

        return mask, fill_value

    def _compute_grid_mask(self, input_shape, ratio):
        height = tf.cast(input_shape[0], tf.float32)
        width = tf.cast(input_shape[1], tf.float32)

        # mask side length
        input_diagonal_len = tf.sqrt(tf.square(width) + tf.square(height))
        mask_side_len = tf.math.ceil(input_diagonal_len)

        # grid unit size
        unit_size = self._random_generator.random_uniform(
            shape=(),
            minval=tf.math.minimum(height * 0.5, width * 0.3),
            maxval=tf.math.maximum(height * 0.5, width * 0.3) + 1,
            dtype=tf.float32,
        )
        rectangle_side_len = tf.cast((ratio) * unit_size, tf.float32)

        # sample x and y offset for grid units randomly between 0 and unit_size
        delta_x = self._random_generator.random_uniform(
            shape=(), minval=0.0, maxval=unit_size, dtype=tf.float32
        )
        delta_y = self._random_generator.random_uniform(
            shape=(), minval=0.0, maxval=unit_size, dtype=tf.float32
        )

        # grid size (number of diagonal units in grid)
        grid_size = mask_side_len // unit_size + 1
        grid_size_range = tf.range(1, grid_size + 1)

        # diagonal corner coordinates
        unit_size_range = grid_size_range * unit_size
        x1 = unit_size_range - delta_x
        x0 = x1 - rectangle_side_len
        y1 = unit_size_range - delta_y
        y0 = y1 - rectangle_side_len

        # compute grid coordinates
        x0, y0 = tf.meshgrid(x0, y0)
        x1, y1 = tf.meshgrid(x1, y1)

        # flatten mesh grid
        x0 = tf.reshape(x0, [-1])
        y0 = tf.reshape(y0, [-1])
        x1 = tf.reshape(x1, [-1])
        y1 = tf.reshape(y1, [-1])

        # convert coordinates to mask
        corners = tf.stack([x0, y0, x1, y1], axis=-1)
        mask_side_len = tf.cast(mask_side_len, tf.int32)
        rectangle_masks = fill_utils.corners_to_mask(
            corners, mask_shape=(mask_side_len, mask_side_len)
        )
        grid_mask = tf.reduce_any(rectangle_masks, axis=0)

        return grid_mask

    def augment_image(self, image, transformation=None, **kwargs):
        mask, fill_value = transformation
        input_shape = tf.shape(image)

        # center crop mask
        input_height = input_shape[0]
        input_width = input_shape[1]
        mask = _center_crop(mask, input_width, input_height)

        # convert back to boolean mask
        mask = tf.cast(mask, tf.bool)

        return tf.where(mask, fill_value, image)

    def augment_bounding_boxes(self, bounding_boxes, **kwargs):
        return bounding_boxes

    def augment_label(self, label, transformation=None, **kwargs):
        return label

    def augment_segmentation_mask(self, segmentation_mask, transformation, **kwargs):
        return segmentation_mask

    def get_config(self):
        config = {
            "ratio_factor": self.ratio_factor,
            "rotation_factor": self.rotation_factor,
            "fill_mode": self.fill_mode,
            "fill_value": self.fill_value,
            "seed": self.seed,
        }
        base_config = super().get_config()
        return dict(list(base_config.items()) + list(config.items()))