grayscale_test.py 2.79 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf

from keras_cv.layers import preprocessing


class GrayscaleTest(tf.test.TestCase):
    def test_return_shapes(self):
        xs = tf.ones((2, 512, 512, 3))

        layer = preprocessing.Grayscale(
            output_channels=1,
        )
        xs1 = layer(xs, training=True)

        layer = preprocessing.Grayscale(
            output_channels=3,
        )
        xs2 = layer(xs, training=True)

        self.assertEqual(xs1.shape, [2, 512, 512, 1])
        self.assertEqual(xs2.shape, [2, 512, 512, 3])

    def test_in_tf_function(self):
        xs = tf.cast(
            tf.stack([2 * tf.ones((100, 100, 3)), tf.ones((100, 100, 3))], axis=0),
            tf.float32,
        )

        # test 1
        layer = preprocessing.Grayscale(
            output_channels=1,
        )

        @tf.function
        def augment(x):
            return layer(x, training=True)

        xs1 = augment(xs)

        # test 2
        layer = preprocessing.Grayscale(
            output_channels=3,
        )

        @tf.function
        def augment(x):
            return layer(x, training=True)

        xs2 = augment(xs)

        self.assertEqual(xs1.shape, [2, 100, 100, 1])
        self.assertEqual(xs2.shape, [2, 100, 100, 3])

    def test_non_square_image(self):
        xs = tf.cast(
            tf.stack([2 * tf.ones((512, 1024, 3)), tf.ones((512, 1024, 3))], axis=0),
            tf.float32,
        )

        layer = preprocessing.Grayscale(
            output_channels=1,
        )
        xs1 = layer(xs, training=True)

        layer = preprocessing.Grayscale(
            output_channels=3,
        )
        xs2 = layer(xs, training=True)

        self.assertEqual(xs1.shape, [2, 512, 1024, 1])
        self.assertEqual(xs2.shape, [2, 512, 1024, 3])

    def test_in_single_image(self):
        xs = tf.cast(
            tf.ones((512, 512, 3)),
            dtype=tf.float32,
        )

        layer = preprocessing.Grayscale(
            output_channels=1,
        )
        xs1 = layer(xs, training=True)

        layer = preprocessing.Grayscale(
            output_channels=3,
        )
        xs2 = layer(xs, training=True)

        self.assertEqual(xs1.shape, [512, 512, 1])
        self.assertEqual(xs2.shape, [512, 512, 3])