datasets.py 43.1 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Dataloaders and dataset utils
"""

import glob
import hashlib
import json
9
import logging
huchen's avatar
huchen committed
10
11
12
13
14
import os
import random
import shutil
import time
from itertools import repeat
15
from multiprocessing.pool import ThreadPool, Pool
huchen's avatar
huchen committed
16
17
18
19
20
21
22
23
24
from pathlib import Path
from threading import Thread
from zipfile import ZipFile

import cv2
import numpy as np
import torch
import torch.nn.functional as F
import yaml
25
26
from PIL import Image, ExifTags
from torch.utils.data import Dataset
huchen's avatar
huchen committed
27
28
29
from tqdm import tqdm

from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
30
31
from utils.general import check_dataset, check_requirements, check_yaml, clean_str, segments2boxes, \
    xywh2xyxy, xywhn2xyxy, xyxy2xywhn, xyn2xy
huchen's avatar
huchen committed
32
33
34
35
36
37
from utils.torch_utils import torch_distributed_zero_first

# Parameters
HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']  # acceptable image suffixes
VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes
38
NUM_THREADS = min(8, os.cpu_count())  # number of multiprocessing threads
huchen's avatar
huchen committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
    if ExifTags.TAGS[orientation] == 'Orientation':
        break


def get_hash(paths):
    # Returns a single hash value of a list of paths (files or dirs)
    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
    h = hashlib.md5(str(size).encode())  # hash sizes
    h.update(''.join(paths).encode())  # hash paths
    return h.hexdigest()  # return hash


def exif_size(img):
    # Returns exif-corrected PIL size
    s = img.size  # (width, height)
    try:
        rotation = dict(img._getexif().items())[orientation]
        if rotation == 6:  # rotation 270
            s = (s[1], s[0])
        elif rotation == 8:  # rotation 90
            s = (s[1], s[0])
    except:
        pass

    return s


def exif_transpose(image):
    """
    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
72
    From https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py
huchen's avatar
huchen committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    :param image: The image to transpose.
    :return: An image.
    """
    exif = image.getexif()
    orientation = exif.get(0x0112, 1)  # default 1
    if orientation > 1:
        method = {2: Image.FLIP_LEFT_RIGHT,
                  3: Image.ROTATE_180,
                  4: Image.FLIP_TOP_BOTTOM,
                  5: Image.TRANSPOSE,
                  6: Image.ROTATE_270,
                  7: Image.TRANSVERSE,
                  8: Image.ROTATE_90,
                  }.get(orientation)
        if method is not None:
            image = image.transpose(method)
            del exif[0x0112]
            image.info["exif"] = exif.tobytes()
    return image


def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
96
97
98
                      rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix=''):
    # Make sure only the first process in DDP process the dataset first, and the following others can use the cache
    with torch_distributed_zero_first(rank):
huchen's avatar
huchen committed
99
        dataset = LoadImagesAndLabels(path, imgsz, batch_size,
100
101
102
                                      augment=augment,  # augment images
                                      hyp=hyp,  # augmentation hyperparameters
                                      rect=rect,  # rectangular training
huchen's avatar
huchen committed
103
104
105
106
107
108
109
110
                                      cache_images=cache,
                                      single_cls=single_cls,
                                      stride=int(stride),
                                      pad=pad,
                                      image_weights=image_weights,
                                      prefix=prefix)

    batch_size = min(batch_size, len(dataset))
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, workers])  # number of workers
    sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
    loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
    # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader()
    dataloader = loader(dataset,
                        batch_size=batch_size,
                        num_workers=nw,
                        sampler=sampler,
                        pin_memory=True,
                        collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
    return dataloader, dataset


class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
huchen's avatar
huchen committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    """ Dataloader that reuses workers

    Uses same syntax as vanilla DataLoader
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
        self.iterator = super().__iter__()

    def __len__(self):
        return len(self.batch_sampler.sampler)

    def __iter__(self):
        for i in range(len(self)):
            yield next(self.iterator)


143
class _RepeatSampler(object):
huchen's avatar
huchen committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    """ Sampler that repeats forever

    Args:
        sampler (Sampler)
    """

    def __init__(self, sampler):
        self.sampler = sampler

    def __iter__(self):
        while True:
            yield from iter(self.sampler)


class LoadImages:
    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
    def __init__(self, path, img_size=640, stride=32, auto=True):
        p = str(Path(path).resolve())  # os-agnostic absolute path
        if '*' in p:
            files = sorted(glob.glob(p, recursive=True))  # glob
        elif os.path.isdir(p):
            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
        elif os.path.isfile(p):
            files = [p]  # files
        else:
            raise Exception(f'ERROR: {p} does not exist')

        images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
        videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
        ni, nv = len(images), len(videos)

        self.img_size = img_size
        self.stride = stride
        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.video_flag = [False] * ni + [True] * nv
        self.mode = 'image'
        self.auto = auto
        if any(videos):
            self.new_video(videos[0])  # new video
        else:
            self.cap = None
        assert self.nf > 0, f'No images or videos found in {p}. ' \
                            f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'

    def __iter__(self):
        self.count = 0
        return self

    def __next__(self):
        if self.count == self.nf:
            raise StopIteration
        path = self.files[self.count]

        if self.video_flag[self.count]:
            # Read video
            self.mode = 'video'
            ret_val, img0 = self.cap.read()
202
            if not ret_val:
huchen's avatar
huchen committed
203
204
205
206
207
208
209
210
211
212
                self.count += 1
                self.cap.release()
                if self.count == self.nf:  # last video
                    raise StopIteration
                else:
                    path = self.files[self.count]
                    self.new_video(path)
                    ret_val, img0 = self.cap.read()

            self.frame += 1
213
            print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')
huchen's avatar
huchen committed
214
215
216
217
218

        else:
            # Read image
            self.count += 1
            img0 = cv2.imread(path)  # BGR
219
220
            assert img0 is not None, 'Image Not Found ' + path
            print(f'image {self.count}/{self.nf} {path}: ', end='')
huchen's avatar
huchen committed
221
222
223
224
225
226
227
228

        # Padded resize
        img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)

229
        return path, img, img0, self.cap
huchen's avatar
huchen committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    def new_video(self, path):
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))

    def __len__(self):
        return self.nf  # number of files


class LoadWebcam:  # for inference
    # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
    def __init__(self, pipe='0', img_size=640, stride=32):
        self.img_size = img_size
        self.stride = stride
        self.pipe = eval(pipe) if pipe.isnumeric() else pipe
        self.cap = cv2.VideoCapture(self.pipe)  # video capture object
        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if cv2.waitKey(1) == ord('q'):  # q to quit
            self.cap.release()
            cv2.destroyAllWindows()
            raise StopIteration

        # Read frame
        ret_val, img0 = self.cap.read()
        img0 = cv2.flip(img0, 1)  # flip left-right

        # Print
        assert ret_val, f'Camera Error {self.pipe}'
        img_path = 'webcam.jpg'
267
        print(f'webcam {self.count}: ', end='')
huchen's avatar
huchen committed
268
269
270
271
272
273
274
275

        # Padded resize
        img = letterbox(img0, self.img_size, stride=self.stride)[0]

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)

276
        return img_path, img, img0, None
huchen's avatar
huchen committed
277
278
279
280
281
282
283
284
285
286
287
288
289

    def __len__(self):
        return 0


class LoadStreams:
    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
    def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
        self.mode = 'stream'
        self.img_size = img_size
        self.stride = stride

        if os.path.isfile(sources):
290
            with open(sources, 'r') as f:
huchen's avatar
huchen committed
291
292
293
294
295
296
297
298
299
300
                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
        else:
            sources = [sources]

        n = len(sources)
        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
        self.sources = [clean_str(x) for x in sources]  # clean source names for later
        self.auto = auto
        for i, s in enumerate(sources):  # index, source
            # Start thread to read frames from video stream
301
            print(f'{i + 1}/{n}: {s}... ', end='')
huchen's avatar
huchen committed
302
303
304
305
306
307
            if 'youtube.com/' in s or 'youtu.be/' in s:  # if source is YouTube video
                check_requirements(('pafy', 'youtube_dl'))
                import pafy
                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
            cap = cv2.VideoCapture(s)
308
            assert cap.isOpened(), f'Failed to open {s}'
huchen's avatar
huchen committed
309
310
            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
311
            self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0  # 30 FPS fallback
huchen's avatar
huchen committed
312
313
314
315
            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback

            _, self.imgs[i] = cap.read()  # guarantee first frame
            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
316
            print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
huchen's avatar
huchen committed
317
            self.threads[i].start()
318
        print('')  # newline
huchen's avatar
huchen committed
319
320
321
322
323

        # check for common shapes
        s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
        if not self.rect:
324
            print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
huchen's avatar
huchen committed
325
326
327
328
329
330
331
332
333
334
335
336
337

    def update(self, i, cap, stream):
        # Read stream `i` frames in daemon thread
        n, f, read = 0, self.frames[i], 1  # frame number, frame array, inference every 'read' frame
        while cap.isOpened() and n < f:
            n += 1
            # _, self.imgs[index] = cap.read()
            cap.grab()
            if n % read == 0:
                success, im = cap.retrieve()
                if success:
                    self.imgs[i] = im
                else:
338
339
                    print('WARNING: Video stream unresponsive, please check your IP camera connection.')
                    self.imgs[i] *= 0
huchen's avatar
huchen committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
                    cap.open(stream)  # re-open stream if signal was lost
            time.sleep(1 / self.fps[i])  # wait time

    def __iter__(self):
        self.count = -1
        return self

    def __next__(self):
        self.count += 1
        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
            cv2.destroyAllWindows()
            raise StopIteration

        # Letterbox
        img0 = self.imgs.copy()
        img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]

        # Stack
        img = np.stack(img, 0)

        # Convert
        img = img[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
        img = np.ascontiguousarray(img)

364
        return self.sources, img, img0, None
huchen's avatar
huchen committed
365
366
367
368
369
370
371
372
373
374
375
376
377

    def __len__(self):
        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years


def img2label_paths(img_paths):
    # Define label paths as a function of image paths
    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings
    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]


class LoadImagesAndLabels(Dataset):
    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
378
    cache_version = 0.5  # dataset labels *.cache version
huchen's avatar
huchen committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
        self.img_size = img_size
        self.augment = augment
        self.hyp = hyp
        self.image_weights = image_weights
        self.rect = False if image_weights else rect
        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
        self.mosaic_border = [-img_size // 2, -img_size // 2]
        self.stride = stride
        self.path = path
        self.albumentations = Albumentations() if augment else None

        try:
            f = []  # image files
            for p in path if isinstance(path, list) else [path]:
                p = Path(p)  # os-agnostic
                if p.is_dir():  # dir
                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
399
                    # f = list(p.rglob('**/*.*'))  # pathlib
huchen's avatar
huchen committed
400
                elif p.is_file():  # file
401
                    with open(p, 'r') as t:
huchen's avatar
huchen committed
402
403
404
405
406
407
                        t = t.read().strip().splitlines()
                        parent = str(p.parent) + os.sep
                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
                else:
                    raise Exception(f'{prefix}{p} does not exist')
408
409
            self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS])
            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats])  # pathlib
huchen's avatar
huchen committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
            assert self.img_files, f'{prefix}No images found'
        except Exception as e:
            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')

        # Check cache
        self.label_files = img2label_paths(self.img_files)  # labels
        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
        try:
            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
            assert cache['version'] == self.cache_version  # same version
            assert cache['hash'] == get_hash(self.label_files + self.img_files)  # same hash
        except:
            cache, exists = self.cache_labels(cache_path, prefix), False  # cache

        # Display cache
        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupted, total
        if exists:
            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
            tqdm(None, desc=prefix + d, total=n, initial=n)  # display cache results
            if cache['msgs']:
430
                logging.info('\n'.join(cache['msgs']))  # display warnings
huchen's avatar
huchen committed
431
432
433
434
435
436
437
438
439
        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'

        # Read cache
        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
        labels, shapes, self.segments = zip(*cache.values())
        self.labels = list(labels)
        self.shapes = np.array(shapes, dtype=np.float64)
        self.img_files = list(cache.keys())  # update
        self.label_files = img2label_paths(cache.keys())  # update
440
441
442
443
        if single_cls:
            for x in self.labels:
                x[:, 0] = 0

huchen's avatar
huchen committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
        n = len(shapes)  # number of images
        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
        nb = bi[-1] + 1  # number of batches
        self.batch = bi  # batch index of image
        self.n = n
        self.indices = range(n)

        # Rectangular Training
        if self.rect:
            # Sort by aspect ratio
            s = self.shapes  # wh
            ar = s[:, 1] / s[:, 0]  # aspect ratio
            irect = ar.argsort()
            self.img_files = [self.img_files[i] for i in irect]
            self.label_files = [self.label_files[i] for i in irect]
            self.labels = [self.labels[i] for i in irect]
            self.shapes = s[irect]  # wh
            ar = ar[irect]

            # Set training image shapes
            shapes = [[1, 1]] * nb
            for i in range(nb):
                ari = ar[bi == i]
                mini, maxi = ari.min(), ari.max()
                if maxi < 1:
                    shapes[i] = [maxi, 1]
                elif mini > 1:
                    shapes[i] = [1, 1 / mini]

            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride

        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
        self.imgs, self.img_npy = [None] * n, [None] * n
        if cache_images:
            if cache_images == 'disk':
                self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
                self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
                self.im_cache_dir.mkdir(parents=True, exist_ok=True)
            gb = 0  # Gigabytes of cached images
            self.img_hw0, self.img_hw = [None] * n, [None] * n
            results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
            pbar = tqdm(enumerate(results), total=n)
            for i, x in pbar:
                if cache_images == 'disk':
                    if not self.img_npy[i].exists():
                        np.save(self.img_npy[i].as_posix(), x[0])
                    gb += self.img_npy[i].stat().st_size
                else:
                    self.imgs[i], self.img_hw0[i], self.img_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
                    gb += self.imgs[i].nbytes
                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
            pbar.close()

    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
        # Cache dataset labels, check images and read shapes
        x = {}  # dict
        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
        with Pool(NUM_THREADS) as pool:
            pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
                        desc=desc, total=len(self.img_files))
            for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x[im_file] = [l, shape, segments]
                if msg:
                    msgs.append(msg)
                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupted"

        pbar.close()
        if msgs:
518
            logging.info('\n'.join(msgs))
huchen's avatar
huchen committed
519
        if nf == 0:
520
            logging.info(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
huchen's avatar
huchen committed
521
522
523
524
525
526
527
        x['hash'] = get_hash(self.label_files + self.img_files)
        x['results'] = nf, nm, ne, nc, len(self.img_files)
        x['msgs'] = msgs  # warnings
        x['version'] = self.cache_version  # cache version
        try:
            np.save(path, x)  # save cache for next time
            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
528
            logging.info(f'{prefix}New cache created: {path}')
huchen's avatar
huchen committed
529
        except Exception as e:
530
            logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # path not writeable
huchen's avatar
huchen committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
        return x

    def __len__(self):
        return len(self.img_files)

    # def __iter__(self):
    #     self.count = -1
    #     print('ran dataset iter')
    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
    #     return self

    def __getitem__(self, index):
        index = self.indices[index]  # linear, shuffled, or image_weights

        hyp = self.hyp
        mosaic = self.mosaic and random.random() < hyp['mosaic']
        if mosaic:
            # Load mosaic
            img, labels = load_mosaic(self, index)
            shapes = None

            # MixUp augmentation
            if random.random() < hyp['mixup']:
                img, labels = mixup(img, labels, *load_mosaic(self, random.randint(0, self.n - 1)))

        else:
            # Load image
            img, (h0, w0), (h, w) = load_image(self, index)

            # Letterbox
            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling

            labels = self.labels[index].copy()
            if labels.size:  # normalized xywh to pixel xyxy format
                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])

            if self.augment:
                img, labels = random_perspective(img, labels,
                                                 degrees=hyp['degrees'],
                                                 translate=hyp['translate'],
                                                 scale=hyp['scale'],
                                                 shear=hyp['shear'],
                                                 perspective=hyp['perspective'])

        nl = len(labels)  # number of labels
        if nl:
            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)

        if self.augment:
            # Albumentations
            img, labels = self.albumentations(img, labels)
            nl = len(labels)  # update after albumentations

            # HSV color-space
            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])

            # Flip up-down
            if random.random() < hyp['flipud']:
                img = np.flipud(img)
                if nl:
                    labels[:, 2] = 1 - labels[:, 2]

            # Flip left-right
            if random.random() < hyp['fliplr']:
                img = np.fliplr(img)
                if nl:
                    labels[:, 1] = 1 - labels[:, 1]

            # Cutouts
            # labels = cutout(img, labels, p=0.5)

        labels_out = torch.zeros((nl, 6))
        if nl:
            labels_out[:, 1:] = torch.from_numpy(labels)

        # Convert
        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
        img = np.ascontiguousarray(img)

        return torch.from_numpy(img), labels_out, self.img_files[index], shapes

    @staticmethod
    def collate_fn(batch):
        img, label, path, shapes = zip(*batch)  # transposed
        for i, l in enumerate(label):
            l[:, 0] = i  # add target image index for build_targets()
        return torch.stack(img, 0), torch.cat(label, 0), path, shapes

    @staticmethod
    def collate_fn4(batch):
        img, label, path, shapes = zip(*batch)  # transposed
        n = len(shapes) // 4
        img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]

627
628
629
        ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
        wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
        s = torch.tensor([[1, 1, .5, .5, .5, .5]])  # scale
huchen's avatar
huchen committed
630
631
632
        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
            i *= 4
            if random.random() < 0.5:
633
                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
huchen's avatar
huchen committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
                    0].type(img[i].type())
                l = label[i]
            else:
                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
                l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
            img4.append(im)
            label4.append(l)

        for i, l in enumerate(label4):
            l[:, 0] = i  # add target image index for build_targets()

        return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4


# Ancillary functions --------------------------------------------------------------------------------------------------
def load_image(self, i):
    # loads 1 image from dataset index 'i', returns im, original hw, resized hw
    im = self.imgs[i]
    if im is None:  # not cached in ram
        npy = self.img_npy[i]
        if npy and npy.exists():  # load npy
            im = np.load(npy)
        else:  # read image
            path = self.img_files[i]
            im = cv2.imread(path)  # BGR
659
            assert im is not None, 'Image Not Found ' + path
huchen's avatar
huchen committed
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        h0, w0 = im.shape[:2]  # orig hw
        r = self.img_size / max(h0, w0)  # ratio
        if r != 1:  # if sizes are not equal
            im = cv2.resize(im, (int(w0 * r), int(h0 * r)),
                            interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
        return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
    else:
        return self.imgs[i], self.img_hw0[i], self.img_hw[i]  # im, hw_original, hw_resized


def load_mosaic(self, index):
    # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
    labels4, segments4 = [], []
    s = self.img_size
674
    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y
huchen's avatar
huchen committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
    indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
    random.shuffle(indices)
    for i, index in enumerate(indices):
        # Load image
        img, _, (h, w) = load_image(self, index)

        # place img in img4
        if i == 0:  # top left
            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
        elif i == 1:  # top right
            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
        elif i == 2:  # bottom left
            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
        elif i == 3:  # bottom right
            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)

        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
        padw = x1a - x1b
        padh = y1a - y1b

        # Labels
        labels, segments = self.labels[index].copy(), self.segments[index].copy()
        if labels.size:
            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
            segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
        labels4.append(labels)
        segments4.extend(segments)

    # Concat/clip labels
    labels4 = np.concatenate(labels4, 0)
    for x in (labels4[:, 1:], *segments4):
        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
    # img4, labels4 = replicate(img4, labels4)  # replicate

    # Augment
    img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
    img4, labels4 = random_perspective(img4, labels4, segments4,
                                       degrees=self.hyp['degrees'],
                                       translate=self.hyp['translate'],
                                       scale=self.hyp['scale'],
                                       shear=self.hyp['shear'],
                                       perspective=self.hyp['perspective'],
                                       border=self.mosaic_border)  # border to remove

    return img4, labels4


def load_mosaic9(self, index):
    # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
    labels9, segments9 = [], []
    s = self.img_size
    indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
    random.shuffle(indices)
    for i, index in enumerate(indices):
        # Load image
        img, _, (h, w) = load_image(self, index)

        # place img in img9
        if i == 0:  # center
            img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
            h0, w0 = h, w
            c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
        elif i == 1:  # top
            c = s, s - h, s + w, s
        elif i == 2:  # top right
            c = s + wp, s - h, s + wp + w, s
        elif i == 3:  # right
            c = s + w0, s, s + w0 + w, s + h
        elif i == 4:  # bottom right
            c = s + w0, s + hp, s + w0 + w, s + hp + h
        elif i == 5:  # bottom
            c = s + w0 - w, s + h0, s + w0, s + h0 + h
        elif i == 6:  # bottom left
            c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
        elif i == 7:  # left
            c = s - w, s + h0 - h, s, s + h0
        elif i == 8:  # top left
            c = s - w, s + h0 - hp - h, s, s + h0 - hp

        padx, pady = c[:2]
760
        x1, y1, x2, y2 = [max(x, 0) for x in c]  # allocate coords
huchen's avatar
huchen committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774

        # Labels
        labels, segments = self.labels[index].copy(), self.segments[index].copy()
        if labels.size:
            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
            segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
        labels9.append(labels)
        segments9.extend(segments)

        # Image
        img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
        hp, wp = h, w  # height, width previous

    # Offset
775
    yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border]  # mosaic center x, y
huchen's avatar
huchen committed
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
    img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]

    # Concat/clip labels
    labels9 = np.concatenate(labels9, 0)
    labels9[:, [1, 3]] -= xc
    labels9[:, [2, 4]] -= yc
    c = np.array([xc, yc])  # centers
    segments9 = [x - c for x in segments9]

    for x in (labels9[:, 1:], *segments9):
        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
    # img9, labels9 = replicate(img9, labels9)  # replicate

    # Augment
    img9, labels9 = random_perspective(img9, labels9, segments9,
                                       degrees=self.hyp['degrees'],
                                       translate=self.hyp['translate'],
                                       scale=self.hyp['scale'],
                                       shear=self.hyp['shear'],
                                       perspective=self.hyp['perspective'],
                                       border=self.mosaic_border)  # border to remove

    return img9, labels9


def create_folder(path='./new'):
    # Create folder
    if os.path.exists(path):
        shutil.rmtree(path)  # delete output folder
    os.makedirs(path)  # make new output folder


def flatten_recursive(path='../datasets/coco128'):
    # Flatten a recursive directory by bringing all files to top level
    new_path = Path(path + '_flat')
    create_folder(new_path)
    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
        shutil.copyfile(file, new_path / Path(file).name)


def extract_boxes(path='../datasets/coco128'):  # from utils.datasets import *; extract_boxes()
    # Convert detection dataset into classification dataset, with one directory per class
    path = Path(path)  # images dir
    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing
    files = list(path.rglob('*.*'))
    n = len(files)  # number of files
    for im_file in tqdm(files, total=n):
        if im_file.suffix[1:] in IMG_FORMATS:
            # image
            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
            h, w = im.shape[:2]

            # labels
            lb_file = Path(img2label_paths([str(im_file)])[0])
            if Path(lb_file).exists():
831
                with open(lb_file, 'r') as f:
huchen's avatar
huchen committed
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels

                for j, x in enumerate(lb):
                    c = int(x[0])  # class
                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
                    if not f.parent.is_dir():
                        f.parent.mkdir(parents=True)

                    b = x[1:] * [w, h, w, h]  # box
                    # b[2:] = b[2:].max()  # rectangle to square
                    b[2:] = b[2:] * 1.2 + 3  # pad
                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)

                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'


def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
    Usage: from utils.datasets import *; autosplit()
    Arguments
        path:            Path to images directory
        weights:         Train, val, test weights (list, tuple)
        annotated_only:  Only use images with an annotated txt file
    """
    path = Path(path)  # images dir
859
    files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in IMG_FORMATS], [])  # image files only
huchen's avatar
huchen committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    n = len(files)  # number of files
    random.seed(0)  # for reproducibility
    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split

    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
    [(path.parent / x).unlink(missing_ok=True) for x in txt]  # remove existing

    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
    for i, img in tqdm(zip(indices, files), total=n):
        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
            with open(path.parent / txt[i], 'a') as f:
                f.write('./' + img.relative_to(path.parent).as_posix() + '\n')  # add image to txt file


def verify_image_label(args):
    # Verify one image-label pair
    im_file, lb_file, prefix = args
    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', []  # number (missing, found, empty, corrupt), message, segments
    try:
        # verify images
        im = Image.open(im_file)
        im.verify()  # PIL verify
        shape = exif_size(im)  # image size
        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
        assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
        if im.format.lower() in ('jpg', 'jpeg'):
            with open(im_file, 'rb') as f:
                f.seek(-2, 2)
                if f.read() != b'\xff\xd9':  # corrupt JPEG
889
890
                    Image.open(im_file).save(im_file, format='JPEG', subsampling=0, quality=100)  # re-save image
                    msg = f'{prefix}WARNING: corrupt JPEG restored and saved {im_file}'
huchen's avatar
huchen committed
891
892
893
894

        # verify labels
        if os.path.isfile(lb_file):
            nf = 1  # label found
895
            with open(lb_file, 'r') as f:
huchen's avatar
huchen committed
896
897
898
899
900
901
                l = [x.split() for x in f.read().strip().splitlines() if len(x)]
                if any([len(x) > 8 for x in l]):  # is segment
                    classes = np.array([x[0] for x in l], dtype=np.float32)
                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l]  # (cls, xy1...)
                    l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
                l = np.array(l, dtype=np.float32)
902
903
904
905
906
            if len(l):
                assert l.shape[1] == 5, 'labels require 5 columns each'
                assert (l >= 0).all(), 'negative labels'
                assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
                assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
huchen's avatar
huchen committed
907
908
909
910
911
912
913
914
915
            else:
                ne = 1  # label empty
                l = np.zeros((0, 5), dtype=np.float32)
        else:
            nm = 1  # label missing
            l = np.zeros((0, 5), dtype=np.float32)
        return im_file, l, shape, segments, nm, nf, ne, nc, msg
    except Exception as e:
        nc = 1
916
        msg = f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}'
huchen's avatar
huchen committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
        return [None, None, None, None, nm, nf, ne, nc, msg]


def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
    """ Return dataset statistics dictionary with images and instances counts per split per class
    To run in parent directory: export PYTHONPATH="$PWD/yolov5"
    Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
    Usage2: from utils.datasets import *; dataset_stats('../datasets/coco128_with_yaml.zip')
    Arguments
        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
        autodownload:   Attempt to download dataset if not found locally
        verbose:        Print stats dictionary
    """

    def round_labels(labels):
        # Update labels to integer class and 6 decimal place floats
933
        return [[int(c), *[round(x, 4) for x in points]] for c, *points in labels]
huchen's avatar
huchen committed
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

    def unzip(path):
        # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
        if str(path).endswith('.zip'):  # path is data.zip
            assert Path(path).is_file(), f'Error unzipping {path}, file not found'
            ZipFile(path).extractall(path=path.parent)  # unzip
            dir = path.with_suffix('')  # dataset directory == zip name
            return True, str(dir), next(dir.rglob('*.yaml'))  # zipped, data_dir, yaml_path
        else:  # path is data.yaml
            return False, None, path

    def hub_ops(f, max_dim=1920):
        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
        f_new = im_dir / Path(f).name  # dataset-hub image filename
        try:  # use PIL
            im = Image.open(f)
            r = max_dim / max(im.height, im.width)  # ratio
            if r < 1.0:  # image too large
                im = im.resize((int(im.width * r), int(im.height * r)))
953
            im.save(f_new, quality=75)  # save
huchen's avatar
huchen committed
954
955
956
957
958
959
        except Exception as e:  # use OpenCV
            print(f'WARNING: HUB ops PIL failure {f}: {e}')
            im = cv2.imread(f)
            im_height, im_width = im.shape[:2]
            r = max_dim / max(im_height, im_width)  # ratio
            if r < 1.0:  # image too large
960
                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_LINEAR)
huchen's avatar
huchen committed
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
            cv2.imwrite(str(f_new), im)

    zipped, data_dir, yaml_path = unzip(Path(path))
    with open(check_yaml(yaml_path), errors='ignore') as f:
        data = yaml.safe_load(f)  # data dict
        if zipped:
            data['path'] = data_dir  # TODO: should this be dir.resolve()?
    check_dataset(data, autodownload)  # download dataset if missing
    hub_dir = Path(data['path'] + ('-hub' if hub else ''))
    stats = {'nc': data['nc'], 'names': data['names']}  # statistics dictionary
    for split in 'train', 'val', 'test':
        if data.get(split) is None:
            stats[split] = None  # i.e. no test set
            continue
        x = []
        dataset = LoadImagesAndLabels(data[split])  # load dataset
        for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
            x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
        x = np.array(x)  # shape(128x80)
        stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
                        'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
                                        'per_class': (x > 0).sum(0).tolist()},
                        'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
                                   zip(dataset.img_files, dataset.labels)]}

        if hub:
            im_dir = hub_dir / 'images'
            im_dir.mkdir(parents=True, exist_ok=True)
            for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
                pass

    # Profile
    stats_path = hub_dir / 'stats.json'
    if profile:
        for _ in range(1):
            file = stats_path.with_suffix('.npy')
            t1 = time.time()
            np.save(file, stats)
            t2 = time.time()
            x = np.load(file, allow_pickle=True)
            print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')

            file = stats_path.with_suffix('.json')
            t1 = time.time()
            with open(file, 'w') as f:
                json.dump(stats, f)  # save stats *.json
            t2 = time.time()
1008
            with open(file, 'r') as f:
huchen's avatar
huchen committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
                x = json.load(f)  # load hyps dict
            print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')

    # Save, print and return
    if hub:
        print(f'Saving {stats_path.resolve()}...')
        with open(stats_path, 'w') as f:
            json.dump(stats, f)  # save stats.json
    if verbose:
        print(json.dumps(stats, indent=2, sort_keys=False))
    return stats