tf.py 19.8 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
TensorFlow, Keras and TFLite versions of YOLOv5
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127

Usage:
    $ python models/tf.py --weights yolov5s.pt

Export:
    $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
"""

import argparse
14
import logging
huchen's avatar
huchen committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import sys
from copy import deepcopy
from pathlib import Path

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd())  # relative

import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
from tensorflow import keras

31
from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat, autopad, C3
huchen's avatar
huchen committed
32
33
from models.experimental import CrossConv, MixConv2d, attempt_load
from models.yolo import Detect
34
from utils.general import make_divisible, print_args, set_logging
huchen's avatar
huchen committed
35
from utils.activations import SiLU
36
37

LOGGER = logging.getLogger(__name__)
huchen's avatar
huchen committed
38
39
40
41
42


class TFBN(keras.layers.Layer):
    # TensorFlow BatchNormalization wrapper
    def __init__(self, w=None):
43
        super(TFBN, self).__init__()
huchen's avatar
huchen committed
44
45
46
47
48
49
50
51
52
53
54
55
56
        self.bn = keras.layers.BatchNormalization(
            beta_initializer=keras.initializers.Constant(w.bias.numpy()),
            gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
            moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
            moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
            epsilon=w.eps)

    def call(self, inputs):
        return self.bn(inputs)


class TFPad(keras.layers.Layer):
    def __init__(self, pad):
57
        super(TFPad, self).__init__()
huchen's avatar
huchen committed
58
59
60
61
62
63
64
65
66
67
        self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])

    def call(self, inputs):
        return tf.pad(inputs, self.pad, mode='constant', constant_values=0)


class TFConv(keras.layers.Layer):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
        # ch_in, ch_out, weights, kernel, stride, padding, groups
68
        super(TFConv, self).__init__()
huchen's avatar
huchen committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
        assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
        # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
        # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch

        conv = keras.layers.Conv2D(
            c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
            kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity

        # YOLOv5 activations
        if isinstance(w.act, nn.LeakyReLU):
            self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
        elif isinstance(w.act, nn.Hardswish):
            self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
        elif isinstance(w.act, (nn.SiLU, SiLU)):
            self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
        else:
            raise Exception(f'no matching TensorFlow activation found for {w.act}')

    def call(self, inputs):
        return self.act(self.bn(self.conv(inputs)))


class TFFocus(keras.layers.Layer):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
        # ch_in, ch_out, kernel, stride, padding, groups
99
        super(TFFocus, self).__init__()
huchen's avatar
huchen committed
100
101
102
        self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)

    def call(self, inputs):  # x(b,w,h,c) -> y(b,w/2,h/2,4c)
103
        # inputs = inputs / 255.  # normalize 0-255 to 0-1
huchen's avatar
huchen committed
104
105
106
107
108
109
110
111
112
        return self.conv(tf.concat([inputs[:, ::2, ::2, :],
                                    inputs[:, 1::2, ::2, :],
                                    inputs[:, ::2, 1::2, :],
                                    inputs[:, 1::2, 1::2, :]], 3))


class TFBottleneck(keras.layers.Layer):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):  # ch_in, ch_out, shortcut, groups, expansion
113
        super(TFBottleneck, self).__init__()
huchen's avatar
huchen committed
114
115
116
117
118
119
120
121
122
123
124
125
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
        self.add = shortcut and c1 == c2

    def call(self, inputs):
        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))


class TFConv2d(keras.layers.Layer):
    # Substitution for PyTorch nn.Conv2D
    def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
126
        super(TFConv2d, self).__init__()
huchen's avatar
huchen committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
        self.conv = keras.layers.Conv2D(
            c2, k, s, 'VALID', use_bias=bias,
            kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
            bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )

    def call(self, inputs):
        return self.conv(inputs)


class TFBottleneckCSP(keras.layers.Layer):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
        # ch_in, ch_out, number, shortcut, groups, expansion
141
        super(TFBottleneckCSP, self).__init__()
huchen's avatar
huchen committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
        self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
        self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
        self.bn = TFBN(w.bn)
        self.act = lambda x: keras.activations.relu(x, alpha=0.1)
        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])

    def call(self, inputs):
        y1 = self.cv3(self.m(self.cv1(inputs)))
        y2 = self.cv2(inputs)
        return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))


class TFC3(keras.layers.Layer):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
        # ch_in, ch_out, number, shortcut, groups, expansion
161
        super(TFC3, self).__init__()
huchen's avatar
huchen committed
162
163
164
165
166
167
168
169
170
171
172
173
174
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])

    def call(self, inputs):
        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))


class TFSPP(keras.layers.Layer):
    # Spatial pyramid pooling layer used in YOLOv3-SPP
    def __init__(self, c1, c2, k=(5, 9, 13), w=None):
175
        super(TFSPP, self).__init__()
huchen's avatar
huchen committed
176
177
178
179
180
181
182
183
184
185
186
187
        c_ = c1 // 2  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
        self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]

    def call(self, inputs):
        x = self.cv1(inputs)
        return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))


class TFDetect(keras.layers.Layer):
    def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):  # detection layer
188
        super(TFDetect, self).__init__()
huchen's avatar
huchen committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [tf.zeros(1)] * self.nl  # init grid
        self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
        self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]),
                                      [self.nl, 1, -1, 1, 2])
        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
        self.training = False  # set to False after building model
        self.imgsz = imgsz
        for i in range(self.nl):
            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
            self.grid[i] = self._make_grid(nx, ny)

    def call(self, inputs):
        z = []  # inference output
        x = []
        for i in range(self.nl):
            x.append(self.m[i](inputs[i]))
            # x(bs,20,20,255) to x(bs,3,20,20,85)
            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
            x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])

            if not self.training:  # inference
                y = tf.sigmoid(x[i])
216
                xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i]  # xy
huchen's avatar
huchen committed
217
218
219
220
221
                wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
                # Normalize xywh to 0-1 to reduce calibration error
                xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
                wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
                y = tf.concat([xy, wh, y[..., 4:]], -1)
222
                z.append(tf.reshape(y, [-1, 3 * ny * nx, self.no]))
huchen's avatar
huchen committed
223
224
225
226
227
228
229
230
231
232
233
234
235

        return x if self.training else (tf.concat(z, 1), x)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
        xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
        return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)


class TFUpsample(keras.layers.Layer):
    def __init__(self, size, scale_factor, mode, w=None):  # warning: all arguments needed including 'w'
236
        super(TFUpsample, self).__init__()
huchen's avatar
huchen committed
237
238
239
240
241
242
243
244
245
246
247
248
249
        assert scale_factor == 2, "scale_factor must be 2"
        self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
        # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
        # with default arguments: align_corners=False, half_pixel_centers=False
        # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
        #                                                            size=(x.shape[1] * 2, x.shape[2] * 2))

    def call(self, inputs):
        return self.upsample(inputs)


class TFConcat(keras.layers.Layer):
    def __init__(self, dimension=1, w=None):
250
        super(TFConcat, self).__init__()
huchen's avatar
huchen committed
251
252
253
254
255
256
257
258
        assert dimension == 1, "convert only NCHW to NHWC concat"
        self.d = 3

    def call(self, inputs):
        return tf.concat(inputs, self.d)


def parse_model(d, ch, model, imgsz):  # model_dict, input_channels(3)
259
    LOGGER.info('\n%3s%18s%3s%10s  %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
huchen's avatar
huchen committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m_str = m
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
275
        if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
huchen's avatar
huchen committed
276
277
278
279
280
281
282
283
284
285
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3]:
                args.insert(2, n)
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
286
            c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
huchen's avatar
huchen committed
287
288
289
290
291
292
293
294
295
296
297
298
        elif m is Detect:
            args.append([ch[x + 1] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            args.append(imgsz)
        else:
            c2 = ch[f]

        tf_m = eval('TF' + m_str.replace('nn.', ''))
        m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
            else tf_m(*args, w=model.model[i])  # module

299
        torch_m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args)  # module
huchen's avatar
huchen committed
300
        t = str(m)[8:-2].replace('__main__.', '')  # module type
301
        np = sum([x.numel() for x in torch_m_.parameters()])  # number params
huchen's avatar
huchen committed
302
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
303
        LOGGER.info('%3s%18s%3s%10.0f  %-40s%-30s' % (i, f, n, np, t, args))  # print
huchen's avatar
huchen committed
304
305
306
307
308
309
310
311
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        ch.append(c2)
    return keras.Sequential(layers), sorted(save)


class TFModel:
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)):  # model, channels, classes
312
        super(TFModel, self).__init__()
huchen's avatar
huchen committed
313
314
315
316
317
318
319
320
321
322
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.yaml['nc']:
323
            print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
huchen's avatar
huchen committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)

    def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
                conf_thres=0.25):
        y = []  # outputs
        x = inputs
        for i, m in enumerate(self.model.layers):
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

            x = m(x)  # run
            y.append(x if m.i in self.savelist else None)  # save output

        # Add TensorFlow NMS
        if tf_nms:
            boxes = self._xywh2xyxy(x[0][..., :4])
            probs = x[0][:, :, 4:5]
            classes = x[0][:, :, 5:]
            scores = probs * classes
            if agnostic_nms:
                nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
                return nms, x[1]
            else:
                boxes = tf.expand_dims(boxes, 2)
                nms = tf.image.combined_non_max_suppression(
                    boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
                return nms, x[1]

        return x[0]  # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
        # x = x[0][0]  # [x(1,6300,85), ...] to x(6300,85)
        # xywh = x[..., :4]  # x(6300,4) boxes
        # conf = x[..., 4:5]  # x(6300,1) confidences
        # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1))  # x(6300,1)  classes
        # return tf.concat([conf, cls, xywh], 1)

    @staticmethod
    def _xywh2xyxy(xywh):
        # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
        x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
        return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)


class AgnosticNMS(keras.layers.Layer):
    # TF Agnostic NMS
    def call(self, input, topk_all, iou_thres, conf_thres):
        # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
        return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input,
                         fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
                         name='agnostic_nms')

    @staticmethod
    def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):  # agnostic NMS
        boxes, classes, scores = x
        class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
        scores_inp = tf.reduce_max(scores, -1)
        selected_inds = tf.image.non_max_suppression(
            boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
        selected_boxes = tf.gather(boxes, selected_inds)
        padded_boxes = tf.pad(selected_boxes,
                              paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
                              mode="CONSTANT", constant_values=0.0)
        selected_scores = tf.gather(scores_inp, selected_inds)
        padded_scores = tf.pad(selected_scores,
                               paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
                               mode="CONSTANT", constant_values=-1.0)
        selected_classes = tf.gather(class_inds, selected_inds)
        padded_classes = tf.pad(selected_classes,
                                paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
                                mode="CONSTANT", constant_values=-1.0)
        valid_detections = tf.shape(selected_inds)[0]
        return padded_boxes, padded_scores, padded_classes, valid_detections


def representative_dataset_gen(dataset, ncalib=100):
    # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
400
    for n, (path, img, im0s, vid_cap) in enumerate(dataset):
huchen's avatar
huchen committed
401
402
        input = np.transpose(img, [1, 2, 0])
        input = np.expand_dims(input, axis=0).astype(np.float32)
403
        input /= 255.0
huchen's avatar
huchen committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        yield [input]
        if n >= ncalib:
            break


def run(weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=(640, 640),  # inference size h,w
        batch_size=1,  # batch size
        dynamic=False,  # dynamic batch size
        ):
    # PyTorch model
    im = torch.zeros((batch_size, 3, *imgsz))  # BCHW image
    model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
    y = model(im)  # inference
    model.info()

    # TensorFlow model
    im = tf.zeros((batch_size, *imgsz, 3))  # BHWC image
    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
    y = tf_model.predict(im)  # inference

    # Keras model
    im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
    keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
    keras_model.summary()


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt


def main(opt):
444
    set_logging()
huchen's avatar
huchen committed
445
446
447
448
449
450
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)