README_origin.md 14.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
<div align="center">
<p>
   <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
   <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
</p>
<br>
<div>
   <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
   <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
   <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
   <br>
   <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
   <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
   <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
   <a href="https://github.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.linkedin.com/company/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://twitter.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://youtube.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.facebook.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.instagram.com/ultralytics/">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
   </a>
</div>

<br>
<p>
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
 open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>

49
<!-- 
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->

</div>

## <div align="center">Documentation</div>

See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.

## <div align="center">Quick Start Examples</div>

<details open>
<summary>Install</summary>

65
66
67
68
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
69
70

```bash
71
72
73
$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt
74
75
76
77
78
79
80
```

</details>

<details open>
<summary>Inference</summary>

81
82
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases).
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

```python
import torch

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom

# Images
img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list

# Inference
results = model(img)

# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
```

</details>



<details>
<summary>Inference with detect.py</summary>

107
108
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
109
110

```bash
111
112
113
114
115
116
117
$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
118
119
120
121
122
123
124
```

</details>

<details>
<summary>Training</summary>

125
126
127
128
Run commands below to reproduce results
on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on
first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the
largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
129
130

```bash
131
132
133
134
$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16
135
136
137
138
```

<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">

139
</details>  
140
141
142
143
144
145
146
147
148
149
150

<details open>
<summary>Tutorials</summary>

* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; ☘️
  RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)&nbsp; 🌟 NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
151
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)

</details>

## <div align="center">Environments</div>

Get started in seconds with our verified environments. Click each icon below for details.

<div align="center">
    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
    </a>
    <a href="https://www.kaggle.com/ultralytics/yolov5">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
    </a>
    <a href="https://hub.docker.com/r/ultralytics/yolov5">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
    </a>
    <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
    </a>
    <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
    </a>
181
</div>  
182
183
184
185
186
187
188
189
190
191
192
193
194
195

## <div align="center">Integrations</div>

<div align="center">
    <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
    </a>
    <a href="https://roboflow.com/?ref=ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
    </a>
</div>

|Weights and Biases|Roboflow ⭐ NEW|
|:-:|:-:|
196
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and automatically export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238


<!-- ## <div align="center">Compete and Win</div>

We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!

<p align="center">
  <a href="https://github.com/ultralytics/yolov5/discussions/3213">
  <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
</p> -->

## <div align="center">Why YOLOv5</div>

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p>
<details>
  <summary>YOLOv5-P5 640 Figure (click to expand)</summary>

<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p>
</details>
<details>
  <summary>Figure Notes (click to expand)</summary>

* **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
</details>

### Pretrained Checkpoints

[assets]: https://github.com/ultralytics/yolov5/releases
[TTA]: https://github.com/ultralytics/yolov5/issues/303

|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
|---                    |---  |---    |---    |---    |---    |---    |---    |---
|[YOLOv5n][assets]      |640  |28.4   |46.0   |**45** |**6.3**|**0.6**|**1.9**|**4.5**
|[YOLOv5s][assets]      |640  |37.2   |56.0   |98     |6.4    |0.9    |7.2    |16.5
|[YOLOv5m][assets]      |640  |45.2   |63.9   |224    |8.2    |1.7    |21.2   |49.0
|[YOLOv5l][assets]      |640  |48.8   |67.2   |430    |10.1   |2.7    |46.5   |109.1
|[YOLOv5x][assets]      |640  |50.7   |68.9   |766    |12.1   |4.8    |86.7   |205.7
|                       |     |       |       |       |       |       |       |
|[YOLOv5n6][assets]     |1280 |34.0   |50.7   |153    |8.1    |2.1    |3.2    |4.6
239
|[YOLOv5s6][assets]     |1280 |44.5   |63.0   |385    |8.2    |3.6    |16.8   |12.6
240
|[YOLOv5m6][assets]     |1280 |51.0   |69.0   |887    |11.1   |6.8    |35.7   |50.0
241
242
|[YOLOv5l6][assets]     |1280 |53.6   |71.6   |1784   |15.8   |10.5   |76.8   |111.4
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>- 
243
244
245
246
247
248

<details>
  <summary>Table Notes (click to expand)</summary>

* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
249
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
250
251
252
253
254
255
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`

</details>

## <div align="center">Contribute</div>

256
257
258
259
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see
our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out
the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to provide 
thoughts and feedback on your experience with YOLOv5. Thank you!
260
261
262

## <div align="center">Contact</div>

263
For issues running YOLOv5 please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business or
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).

<br>

<div align="center">
    <a href="https://github.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.linkedin.com/company/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://twitter.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://youtube.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.facebook.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.instagram.com/ultralytics/">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
    </a>
</div>