vis_pipeline.py 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import itertools
import os
import re
import sys
import warnings
from pathlib import Path
from typing import List

import cv2
import mmcv
import numpy as np
from mmcv import Config, DictAction, ProgressBar

from mmcls.core import visualization as vis
from mmcls.datasets.builder import PIPELINES, build_dataset, build_from_cfg
from mmcls.models.utils import to_2tuple

# text style
bright_style, reset_style = '\x1b[1m', '\x1b[0m'
red_text, blue_text = '\x1b[31m', '\x1b[34m'
white_background = '\x1b[107m'


def parse_args():
    parser = argparse.ArgumentParser(
        description='Visualize a Dataset Pipeline')
    parser.add_argument('config', help='config file path')
    parser.add_argument(
        '--skip-type',
        type=str,
        nargs='*',
        default=['ToTensor', 'Normalize', 'ImageToTensor', 'Collect'],
        help='the pipelines to skip when visualizing')
    parser.add_argument(
        '--output-dir',
        default='',
        type=str,
        help='folder to save output pictures, if not set, do not save.')
    parser.add_argument(
        '--phase',
        default='train',
        type=str,
        choices=['train', 'test', 'val'],
        help='phase of dataset to visualize, accept "train" "test" and "val".'
        ' Default train.')
    parser.add_argument(
        '--number',
        type=int,
        default=sys.maxsize,
        help='number of images selected to visualize, must bigger than 0. if '
        'the number is bigger than length of dataset, show all the images in '
        'dataset; default "sys.maxsize", show all images in dataset')
    parser.add_argument(
        '--mode',
        default='concat',
        type=str,
        choices=['original', 'transformed', 'concat', 'pipeline'],
        help='display mode; display original pictures or transformed pictures'
        ' or comparison pictures. "original" means show images load from disk'
        '; "transformed" means to show images after transformed; "concat" '
        'means show images stitched by "original" and "output" images. '
        '"pipeline" means show all the intermediate images. Default concat.')
    parser.add_argument(
        '--show',
        default=False,
        action='store_true',
        help='whether to display images in pop-up window. Default False.')
    parser.add_argument(
        '--adaptive',
        default=False,
        action='store_true',
        help='whether to automatically adjust the visualization image size')
    parser.add_argument(
        '--min-edge-length',
        default=200,
        type=int,
        help='the min edge length when visualizing images, used when '
        '"--adaptive" is true. Default 200.')
    parser.add_argument(
        '--max-edge-length',
        default=800,
        type=int,
        help='the max edge length when visualizing images, used when '
        '"--adaptive" is true. Default 1000.')
    parser.add_argument(
        '--bgr2rgb',
        default=False,
        action='store_true',
        help='flip the color channel order of images')
    parser.add_argument(
        '--window-size',
        default='12*7',
        help='size of the window to display images, in format of "$W*$H".')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    parser.add_argument(
        '--show-options',
        nargs='+',
        action=DictAction,
        help='custom options for display. key-value pair in xxx=yyy. options '
        'in `mmcls.core.visualization.ImshowInfosContextManager.put_img_infos`'
    )
    args = parser.parse_args()

    assert args.number > 0, "'args.number' must be larger than zero."
    if args.window_size != '':
        assert re.match(r'\d+\*\d+', args.window_size), \
            "'window-size' must be in format 'W*H'."
    if args.output_dir == '' and not args.show:
        raise ValueError("if '--output-dir' and '--show' are not set, "
                         'nothing will happen when the program running.')

    if args.show_options is None:
        args.show_options = {}
    return args


def retrieve_data_cfg(config_path, skip_type, cfg_options, phase):
    cfg = Config.fromfile(config_path)
    if cfg_options is not None:
        cfg.merge_from_dict(cfg_options)
    data_cfg = cfg.data[phase]
    while 'dataset' in data_cfg:
        data_cfg = data_cfg['dataset']
    data_cfg['pipeline'] = [
        x for x in data_cfg.pipeline if x['type'] not in skip_type
    ]

    return cfg


def build_dataset_pipelines(cfg, phase):
    """build dataset and pipeline from config.

    Separate the pipeline except 'LoadImageFromFile' step if
    'LoadImageFromFile' in the pipeline.
    """
    data_cfg = cfg.data[phase]
    loadimage_pipeline = []
    if len(data_cfg.pipeline
           ) != 0 and data_cfg.pipeline[0]['type'] == 'LoadImageFromFile':
        loadimage_pipeline.append(data_cfg.pipeline.pop(0))
    origin_pipeline = data_cfg.pipeline
    data_cfg.pipeline = loadimage_pipeline
    dataset = build_dataset(data_cfg)
    pipelines = {
        pipeline_cfg['type']: build_from_cfg(pipeline_cfg, PIPELINES)
        for pipeline_cfg in origin_pipeline
    }

    return dataset, pipelines


def prepare_imgs(args, imgs: List[np.ndarray], steps=None):
    """prepare the showing picture."""
    ori_shapes = [img.shape for img in imgs]
    # adaptive adjustment to rescale pictures
    if args.adaptive:
        for i, img in enumerate(imgs):
            imgs[i] = adaptive_size(img, args.min_edge_length,
                                    args.max_edge_length)
    else:
        # if src image is too large or too small,
        # warning a "--adaptive" message.
        for ori_h, ori_w, _ in ori_shapes:
            if (args.min_edge_length > ori_h or args.min_edge_length > ori_w
                    or args.max_edge_length < ori_h
                    or args.max_edge_length < ori_w):
                msg = red_text
                msg += 'The visualization picture is too small or too large to'
                msg += ' put text information on it, please add '
                msg += bright_style + red_text + white_background
                msg += '"--adaptive"'
                msg += reset_style + red_text
                msg += ' to adaptively rescale the showing pictures'
                msg += reset_style
                warnings.warn(msg)

    if len(imgs) == 1:
        return imgs[0]
    else:
        return concat_imgs(imgs, steps, ori_shapes)


def concat_imgs(imgs, steps, ori_shapes):
    """Concat list of pictures into a single big picture, align height here."""
    show_shapes = [img.shape for img in imgs]
    show_heights = [shape[0] for shape in show_shapes]
    show_widths = [shape[1] for shape in show_shapes]

    max_height = max(show_heights)
    text_height = 20
    font_size = 0.5
    pic_horizontal_gap = min(show_widths) // 10
    for i, img in enumerate(imgs):
        cur_height = show_heights[i]
        pad_height = max_height - cur_height
        pad_top, pad_bottom = to_2tuple(pad_height // 2)
        # handle instance that the pad_height is an odd number
        if pad_height % 2 == 1:
            pad_top = pad_top + 1
        pad_bottom += text_height * 3  # keep pxs to put step information text
        pad_left, pad_right = to_2tuple(pic_horizontal_gap)
        # make border
        img = cv2.copyMakeBorder(
            img,
            pad_top,
            pad_bottom,
            pad_left,
            pad_right,
            cv2.BORDER_CONSTANT,
            value=(255, 255, 255))
        # put transform phase information in the bottom
        imgs[i] = cv2.putText(
            img=img,
            text=steps[i],
            org=(pic_horizontal_gap, max_height + text_height // 2),
            fontFace=cv2.FONT_HERSHEY_TRIPLEX,
            fontScale=font_size,
            color=(255, 0, 0),
            lineType=1)
        # put image size information in the bottom
        imgs[i] = cv2.putText(
            img=img,
            text=str(ori_shapes[i]),
            org=(pic_horizontal_gap, max_height + int(text_height * 1.5)),
            fontFace=cv2.FONT_HERSHEY_TRIPLEX,
            fontScale=font_size,
            color=(255, 0, 0),
            lineType=1)

    # Height alignment for concatenating
    board = np.concatenate(imgs, axis=1)
    return board


def adaptive_size(image, min_edge_length, max_edge_length, src_shape=None):
    """rescale image if image is too small to put text like cifar."""
    assert min_edge_length >= 0 and max_edge_length >= 0
    assert max_edge_length >= min_edge_length
    src_shape = image.shape if src_shape is None else src_shape
    image_h, image_w, _ = src_shape

    if image_h < min_edge_length or image_w < min_edge_length:
        image = mmcv.imrescale(
            image, min(min_edge_length / image_h, min_edge_length / image_h))
    if image_h > max_edge_length or image_w > max_edge_length:
        image = mmcv.imrescale(
            image, max(max_edge_length / image_h, max_edge_length / image_w))
    return image


def get_display_img(args, item, pipelines):
    """get image to display."""
    # srcs picture could be in RGB or BGR order due to different backends.
    if args.bgr2rgb:
        item['img'] = mmcv.bgr2rgb(item['img'])
    src_image = item['img'].copy()
    pipeline_images = [src_image]

    # get intermediate images through pipelines
    if args.mode in ['transformed', 'concat', 'pipeline']:
        for pipeline in pipelines.values():
            item = pipeline(item)
            trans_image = copy.deepcopy(item['img'])
            trans_image = np.ascontiguousarray(trans_image, dtype=np.uint8)
            pipeline_images.append(trans_image)

    # concatenate images to be showed according to mode
    if args.mode == 'original':
        image = prepare_imgs(args, [src_image], ['src'])
    elif args.mode == 'transformed':
        image = prepare_imgs(args, [pipeline_images[-1]], ['transformed'])
    elif args.mode == 'concat':
        steps = ['src', 'transformed']
        image = prepare_imgs(args, [pipeline_images[0], pipeline_images[-1]],
                             steps)
    elif args.mode == 'pipeline':
        steps = ['src'] + list(pipelines.keys())
        image = prepare_imgs(args, pipeline_images, steps)

    return image


def main():
    args = parse_args()
    wind_w, wind_h = args.window_size.split('*')
    wind_w, wind_h = int(wind_w), int(wind_h)  # showing windows size
    cfg = retrieve_data_cfg(args.config, args.skip_type, args.cfg_options,
                            args.phase)

    dataset, pipelines = build_dataset_pipelines(cfg, args.phase)
    CLASSES = dataset.CLASSES
    display_number = min(args.number, len(dataset))
    progressBar = ProgressBar(display_number)

    with vis.ImshowInfosContextManager(fig_size=(wind_w, wind_h)) as manager:
        for i, item in enumerate(itertools.islice(dataset, display_number)):
            image = get_display_img(args, item, pipelines)

            # dist_path is None as default, means not saving pictures
            dist_path = None
            if args.output_dir:
                # some datasets don't have filenames, such as cifar
                src_path = item.get('filename', '{}.jpg'.format(i))
                dist_path = os.path.join(args.output_dir, Path(src_path).name)

            infos = dict(label=CLASSES[item['gt_label']])

            ret, _ = manager.put_img_infos(
                image,
                infos,
                font_size=20,
                out_file=dist_path,
                show=args.show,
                **args.show_options)

            progressBar.update()

            if ret == 1:
                print('\nMannualy interrupted.')
                break


if __name__ == '__main__':
    main()