vis_cam.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import copy
import math
import pkg_resources
import re
from pathlib import Path

import mmcv
import numpy as np
from mmcv import Config, DictAction
from mmcv.utils import to_2tuple
from torch.nn import BatchNorm1d, BatchNorm2d, GroupNorm, LayerNorm

from mmcls import digit_version
from mmcls.apis import init_model
from mmcls.datasets.pipelines import Compose

try:
    from pytorch_grad_cam import (EigenCAM, EigenGradCAM, GradCAM,
                                  GradCAMPlusPlus, LayerCAM, XGradCAM)
    from pytorch_grad_cam.activations_and_gradients import \
        ActivationsAndGradients
    from pytorch_grad_cam.utils.image import show_cam_on_image
except ImportError:
    raise ImportError('Please run `pip install "grad-cam>=1.3.6"` to install '
                      '3rd party package pytorch_grad_cam.')

# set of transforms, which just change data format, not change the pictures
FORMAT_TRANSFORMS_SET = {'ToTensor', 'Normalize', 'ImageToTensor', 'Collect'}

# Supported grad-cam type map
METHOD_MAP = {
    'gradcam': GradCAM,
    'gradcam++': GradCAMPlusPlus,
    'xgradcam': XGradCAM,
    'eigencam': EigenCAM,
    'eigengradcam': EigenGradCAM,
    'layercam': LayerCAM,
}


def parse_args():
    parser = argparse.ArgumentParser(description='Visualize CAM')
    parser.add_argument('img', help='Image file')
    parser.add_argument('config', help='Config file')
    parser.add_argument('checkpoint', help='Checkpoint file')
    parser.add_argument(
        '--target-layers',
        default=[],
        nargs='+',
        type=str,
        help='The target layers to get CAM, if not set, the tool will '
        'specify the norm layer in the last block. Backbones '
        'implemented by users are recommended to manually specify'
        ' target layers in commmad statement.')
    parser.add_argument(
        '--preview-model',
        default=False,
        action='store_true',
        help='To preview all the model layers')
    parser.add_argument(
        '--method',
        default='GradCAM',
        help='Type of method to use, supports '
        f'{", ".join(list(METHOD_MAP.keys()))}.')
    parser.add_argument(
        '--target-category',
        default=[],
        nargs='+',
        type=int,
        help='The target category to get CAM, default to use result '
        'get from given model.')
    parser.add_argument(
        '--eigen-smooth',
        default=False,
        action='store_true',
        help='Reduce noise by taking the first principle componenet of '
        '``cam_weights*activations``')
    parser.add_argument(
        '--aug-smooth',
        default=False,
        action='store_true',
        help='Wether to use test time augmentation, default not to use')
    parser.add_argument(
        '--save-path',
        type=Path,
        help='The path to save visualize cam image, default not to save.')
    parser.add_argument('--device', default='cpu', help='Device to use cpu')
    parser.add_argument(
        '--vit-like',
        action='store_true',
        help='Whether the network is a ViT-like network.')
    parser.add_argument(
        '--num-extra-tokens',
        type=int,
        help='The number of extra tokens in ViT-like backbones. Defaults to'
        ' use num_extra_tokens of the backbone.')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    args = parser.parse_args()
    if args.method.lower() not in METHOD_MAP.keys():
        raise ValueError(f'invalid CAM type {args.method},'
                         f' supports {", ".join(list(METHOD_MAP.keys()))}.')

    return args


def build_reshape_transform(model, args):
    """Build reshape_transform for `cam.activations_and_grads`, which is
    necessary for ViT-like networks."""
    # ViT_based_Transformers have an additional clstoken in features
    if not args.vit_like:

        def check_shape(tensor):
            assert len(tensor.size()) != 3, \
                (f"The input feature's shape is {tensor.size()}, and it seems "
                 'to have been flattened or from a vit-like network. '
                 "Please use `--vit-like` if it's from a vit-like network.")
            return tensor

        return check_shape

    if args.num_extra_tokens is not None:
        num_extra_tokens = args.num_extra_tokens
    elif hasattr(model.backbone, 'num_extra_tokens'):
        num_extra_tokens = model.backbone.num_extra_tokens
    else:
        num_extra_tokens = 1

    def _reshape_transform(tensor):
        """reshape_transform helper."""
        assert len(tensor.size()) == 3, \
            (f"The input feature's shape is {tensor.size()}, "
             'and the feature seems not from a vit-like network?')
        tensor = tensor[:, num_extra_tokens:, :]
        # get heat_map_height and heat_map_width, preset input is a square
        heat_map_area = tensor.size()[1]
        height, width = to_2tuple(int(math.sqrt(heat_map_area)))
        assert height * height == heat_map_area, \
            (f"The input feature's length ({heat_map_area+num_extra_tokens}) "
             f'minus num-extra-tokens ({num_extra_tokens}) is {heat_map_area},'
             ' which is not a perfect square number. Please check if you used '
             'a wrong num-extra-tokens.')
        result = tensor.reshape(tensor.size(0), height, width, tensor.size(2))

        # Bring the channels to the first dimension, like in CNNs.
        result = result.transpose(2, 3).transpose(1, 2)
        return result

    return _reshape_transform


def apply_transforms(img_path, pipeline_cfg):
    """Apply transforms pipeline and get both formatted data and the image
    without formatting."""
    data = dict(img_info=dict(filename=img_path), img_prefix=None)

    def split_pipeline_cfg(pipeline_cfg):
        """to split the transfoms into image_transforms and
        format_transforms."""
        image_transforms_cfg, format_transforms_cfg = [], []
        if pipeline_cfg[0]['type'] != 'LoadImageFromFile':
            pipeline_cfg.insert(0, dict(type='LoadImageFromFile'))
        for transform in pipeline_cfg:
            if transform['type'] in FORMAT_TRANSFORMS_SET:
                format_transforms_cfg.append(transform)
            else:
                image_transforms_cfg.append(transform)
        return image_transforms_cfg, format_transforms_cfg

    image_transforms, format_transforms = split_pipeline_cfg(pipeline_cfg)
    image_transforms = Compose(image_transforms)
    format_transforms = Compose(format_transforms)

    intermediate_data = image_transforms(data)
    inference_img = copy.deepcopy(intermediate_data['img'])
    format_data = format_transforms(intermediate_data)

    return format_data, inference_img


class MMActivationsAndGradients(ActivationsAndGradients):
    """Activations and gradients manager for mmcls models."""

    def __call__(self, x):
        self.gradients = []
        self.activations = []
        return self.model(
            x, return_loss=False, softmax=False, post_process=False)


def init_cam(method, model, target_layers, use_cuda, reshape_transform):
    """Construct the CAM object once, In order to be compatible with mmcls,
    here we modify the ActivationsAndGradients object."""

    GradCAM_Class = METHOD_MAP[method.lower()]
    cam = GradCAM_Class(
        model=model, target_layers=target_layers, use_cuda=use_cuda)
    # Release the original hooks in ActivationsAndGradients to use
    # MMActivationsAndGradients.
    cam.activations_and_grads.release()
    cam.activations_and_grads = MMActivationsAndGradients(
        cam.model, cam.target_layers, reshape_transform)

    return cam


def get_layer(layer_str, model):
    """get model layer from given str."""
    cur_layer = model
    layer_names = layer_str.strip().split('.')

    def get_children_by_name(model, name):
        try:
            return getattr(model, name)
        except AttributeError as e:
            raise AttributeError(
                e.args[0] +
                '. Please use `--preview-model` to check keys at first.')

    def get_children_by_eval(model, name):
        try:
            return eval(f'model{name}', {}, {'model': model})
        except (AttributeError, IndexError) as e:
            raise AttributeError(
                e.args[0] +
                '. Please use `--preview-model` to check keys at first.')

    for layer_name in layer_names:
        match_res = re.match('(?P<name>.+?)(?P<indices>(\\[.+\\])+)',
                             layer_name)
        if match_res:
            layer_name = match_res.groupdict()['name']
            indices = match_res.groupdict()['indices']
            cur_layer = get_children_by_name(cur_layer, layer_name)
            cur_layer = get_children_by_eval(cur_layer, indices)
        else:
            cur_layer = get_children_by_name(cur_layer, layer_name)

    return cur_layer


def show_cam_grad(grayscale_cam, src_img, title, out_path=None):
    """fuse src_img and grayscale_cam and show or save."""
    grayscale_cam = grayscale_cam[0, :]
    src_img = np.float32(src_img) / 255
    visualization_img = show_cam_on_image(
        src_img, grayscale_cam, use_rgb=False)

    if out_path:
        mmcv.imwrite(visualization_img, str(out_path))
    else:
        mmcv.imshow(visualization_img, win_name=title)


def get_default_traget_layers(model, args):
    """get default target layers from given model, here choose nrom type layer
    as default target layer."""
    norm_layers = []
    for m in model.backbone.modules():
        if isinstance(m, (BatchNorm2d, LayerNorm, GroupNorm, BatchNorm1d)):
            norm_layers.append(m)
    if len(norm_layers) == 0:
        raise ValueError(
            '`--target-layers` is empty. Please use `--preview-model`'
            ' to check keys at first and then specify `target-layers`.')
    # if the model is CNN model or Swin model, just use the last norm
    # layer as the target-layer, if the model is ViT model, the final
    # classification is done on the class token computed in the last
    # attention block, the output will not be affected by the 14x14
    # channels in the last layer. The gradient of the output with
    # respect to them, will be 0! here use the last 3rd norm layer.
    # means the first norm of the last decoder block.
    if args.vit_like:
        if args.num_extra_tokens:
            num_extra_tokens = args.num_extra_tokens
        elif hasattr(model.backbone, 'num_extra_tokens'):
            num_extra_tokens = model.backbone.num_extra_tokens
        else:
            raise AttributeError('Please set num_extra_tokens in backbone'
                                 " or using 'num-extra-tokens'")

        # if a vit-like backbone's num_extra_tokens bigger than 0, view it
        # as a VisionTransformer backbone, eg. DeiT, T2T-ViT.
        if num_extra_tokens >= 1:
            print('Automatically choose the last norm layer before the '
                  'final attention block as target_layer..')
            return [norm_layers[-3]]
    print('Automatically choose the last norm layer as target_layer.')
    target_layers = [norm_layers[-1]]
    return target_layers


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # build the model from a config file and a checkpoint file
    model = init_model(cfg, args.checkpoint, device=args.device)
    if args.preview_model:
        print(model)
        print('\n Please remove `--preview-model` to get the CAM.')
        return

    # apply transform and perpare data
    data, src_img = apply_transforms(args.img, cfg.data.test.pipeline)

    # build target layers
    if args.target_layers:
        target_layers = [
            get_layer(layer, model) for layer in args.target_layers
        ]
    else:
        target_layers = get_default_traget_layers(model, args)

    # init a cam grad calculator
    use_cuda = ('cuda' in args.device)
    reshape_transform = build_reshape_transform(model, args)
    cam = init_cam(args.method, model, target_layers, use_cuda,
                   reshape_transform)

    # warp the target_category with ClassifierOutputTarget in grad_cam>=1.3.7,
    # to fix the bug in #654.
    targets = None
    if args.target_category:
        grad_cam_v = pkg_resources.get_distribution('grad_cam').version
        if digit_version(grad_cam_v) >= digit_version('1.3.7'):
            from pytorch_grad_cam.utils.model_targets import \
                ClassifierOutputTarget
            targets = [ClassifierOutputTarget(c) for c in args.target_category]
        else:
            targets = args.target_category

    # calculate cam grads and show|save the visualization image
    grayscale_cam = cam(
        data['img'].unsqueeze(0),
        targets,
        eigen_smooth=args.eigen_smooth,
        aug_smooth=args.aug_smooth)
    show_cam_grad(
        grayscale_cam, src_img, title=args.method, out_path=args.save_path)


if __name__ == '__main__':
    main()