pytorch2onnx.py 7.6 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
unknown's avatar
unknown committed
2
import argparse
3
import warnings
unknown's avatar
unknown committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from functools import partial

import mmcv
import numpy as np
import onnxruntime as rt
import torch
from mmcv.onnx import register_extra_symbolics
from mmcv.runner import load_checkpoint

from mmcls.models import build_classifier

torch.manual_seed(3)


def _demo_mm_inputs(input_shape, num_classes):
    """Create a superset of inputs needed to run test or train batches.

    Args:
        input_shape (tuple):
            input batch dimensions
        num_classes (int):
            number of semantic classes
    """
    (N, C, H, W) = input_shape
    rng = np.random.RandomState(0)
    imgs = rng.rand(*input_shape)
    gt_labels = rng.randint(
        low=0, high=num_classes, size=(N, 1)).astype(np.uint8)
    mm_inputs = {
        'imgs': torch.FloatTensor(imgs).requires_grad_(True),
        'gt_labels': torch.LongTensor(gt_labels),
    }
    return mm_inputs


def pytorch2onnx(model,
                 input_shape,
                 opset_version=11,
                 dynamic_export=False,
                 show=False,
                 output_file='tmp.onnx',
                 do_simplify=False,
                 verify=False):
    """Export Pytorch model to ONNX model and verify the outputs are same
    between Pytorch and ONNX.

    Args:
        model (nn.Module): Pytorch model we want to export.
        input_shape (tuple): Use this input shape to construct
            the corresponding dummy input and execute the model.
        opset_version (int): The onnx op version. Default: 11.
        show (bool): Whether print the computation graph. Default: False.
        output_file (string): The path to where we store the output ONNX model.
            Default: `tmp.onnx`.
        verify (bool): Whether compare the outputs between Pytorch and ONNX.
            Default: False.
    """
    model.cpu().eval()

63
64
65
66
67
68
69
70
71
    if hasattr(model.head, 'num_classes'):
        num_classes = model.head.num_classes
    # Some backbones use `num_classes=-1` to disable top classifier.
    elif getattr(model.backbone, 'num_classes', -1) > 0:
        num_classes = model.backbone.num_classes
    else:
        raise AttributeError('Cannot find "num_classes" in both head and '
                             'backbone, please check the config file.')

unknown's avatar
unknown committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    mm_inputs = _demo_mm_inputs(input_shape, num_classes)

    imgs = mm_inputs.pop('imgs')
    img_list = [img[None, :] for img in imgs]

    # replace original forward function
    origin_forward = model.forward
    model.forward = partial(model.forward, img_metas={}, return_loss=False)
    register_extra_symbolics(opset_version)

    # support dynamic shape export
    if dynamic_export:
        dynamic_axes = {
            'input': {
                0: 'batch',
                2: 'width',
                3: 'height'
            },
            'probs': {
                0: 'batch'
            }
        }
    else:
        dynamic_axes = {}

    with torch.no_grad():
        torch.onnx.export(
            model, (img_list, ),
            output_file,
            input_names=['input'],
            output_names=['probs'],
            export_params=True,
            keep_initializers_as_inputs=True,
            dynamic_axes=dynamic_axes,
            verbose=show,
            opset_version=opset_version)
        print(f'Successfully exported ONNX model: {output_file}')
    model.forward = origin_forward

    if do_simplify:
112
        import onnx
unknown's avatar
unknown committed
113
        import onnxsim
114
        from mmcv import digit_version
unknown's avatar
unknown committed
115

116
117
        min_required_version = '0.4.0'
        assert digit_version(onnxsim.__version__) >= digit_version(
unknown's avatar
unknown committed
118
            min_required_version
119
        ), f'Requires to install onnxsim>={min_required_version}'
unknown's avatar
unknown committed
120

121
122
123
124
        model_opt, check_ok = onnxsim.simplify(output_file)
        if check_ok:
            onnx.save(model_opt, output_file)
            print(f'Successfully simplified ONNX model: {output_file}')
unknown's avatar
unknown committed
125
        else:
126
            print('Failed to simplify ONNX model.')
unknown's avatar
unknown committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    if verify:
        # check by onnx
        import onnx
        onnx_model = onnx.load(output_file)
        onnx.checker.check_model(onnx_model)

        # test the dynamic model
        if dynamic_export:
            dynamic_test_inputs = _demo_mm_inputs(
                (input_shape[0], input_shape[1], input_shape[2] * 2,
                 input_shape[3] * 2), model.head.num_classes)
            imgs = dynamic_test_inputs.pop('imgs')
            img_list = [img[None, :] for img in imgs]

        # check the numerical value
        # get pytorch output
        pytorch_result = model(img_list, img_metas={}, return_loss=False)[0]

        # get onnx output
        input_all = [node.name for node in onnx_model.graph.input]
        input_initializer = [
            node.name for node in onnx_model.graph.initializer
        ]
        net_feed_input = list(set(input_all) - set(input_initializer))
        assert (len(net_feed_input) == 1)
        sess = rt.InferenceSession(output_file)
        onnx_result = sess.run(
            None, {net_feed_input[0]: img_list[0].detach().numpy()})[0]
        if not np.allclose(pytorch_result, onnx_result):
            raise ValueError(
                'The outputs are different between Pytorch and ONNX')
        print('The outputs are same between Pytorch and ONNX')


def parse_args():
    parser = argparse.ArgumentParser(description='Convert MMCls to ONNX')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('--checkpoint', help='checkpoint file', default=None)
    parser.add_argument('--show', action='store_true', help='show onnx graph')
    parser.add_argument(
        '--verify', action='store_true', help='verify the onnx model')
    parser.add_argument('--output-file', type=str, default='tmp.onnx')
    parser.add_argument('--opset-version', type=int, default=11)
    parser.add_argument(
        '--simplify',
        action='store_true',
        help='Whether to simplify onnx model.')
    parser.add_argument(
        '--shape',
        type=int,
        nargs='+',
        default=[224, 224],
        help='input image size')
    parser.add_argument(
        '--dynamic-export',
        action='store_true',
        help='Whether to export ONNX with dynamic input shape. \
            Defaults to False.')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (1, 3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (
            1,
            3,
        ) + tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = mmcv.Config.fromfile(args.config)
    cfg.model.pretrained = None

    # build the model and load checkpoint
    classifier = build_classifier(cfg.model)

    if args.checkpoint:
        load_checkpoint(classifier, args.checkpoint, map_location='cpu')

211
    # convert model to onnx file
unknown's avatar
unknown committed
212
213
214
215
216
217
218
219
220
    pytorch2onnx(
        classifier,
        input_shape,
        opset_version=args.opset_version,
        show=args.show,
        dynamic_export=args.dynamic_export,
        output_file=args.output_file,
        do_simplify=args.simplify,
        verify=args.verify)
221
222
223
224
225
226
227
228
229
230
231
232

    # Following strings of text style are from colorama package
    bright_style, reset_style = '\x1b[1m', '\x1b[0m'
    red_text, blue_text = '\x1b[31m', '\x1b[34m'
    white_background = '\x1b[107m'

    msg = white_background + bright_style + red_text
    msg += 'DeprecationWarning: This tool will be deprecated in future. '
    msg += blue_text + 'Welcome to use the unified model deployment toolbox '
    msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy'
    msg += reset_style
    warnings.warn(msg)