reparameterize_model.py 1.73 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from pathlib import Path

import torch

from mmcls.apis import init_model
from mmcls.models.classifiers import ImageClassifier


def convert_classifier_to_deploy(model, save_path):
    print('Converting...')
    assert hasattr(model, 'backbone') and \
        hasattr(model.backbone, 'switch_to_deploy'), \
        '`model.backbone` must has method of "switch_to_deploy".' \
        f' But {model.backbone.__class__} does not have.'

    model.backbone.switch_to_deploy()
    torch.save(model.state_dict(), save_path)

    print('Done! Save at path "{}"'.format(save_path))


def main():
    parser = argparse.ArgumentParser(
        description='Convert the parameters of the repvgg block '
        'from training mode to deployment mode.')
    parser.add_argument(
        'config_path',
        help='The path to the configuration file of the network '
        'containing the repvgg block.')
    parser.add_argument(
        'checkpoint_path',
        help='The path to the checkpoint file corresponding to the model.')
    parser.add_argument(
        'save_path',
        help='The path where the converted checkpoint file is stored.')
    args = parser.parse_args()

    save_path = Path(args.save_path)
    if save_path.suffix != '.pth':
        print('The path should contain the name of the pth format file.')
        exit()
    save_path.parent.mkdir(parents=True, exist_ok=True)

    model = init_model(
        args.config_path, checkpoint=args.checkpoint_path, device='cpu')
    assert isinstance(model, ImageClassifier), \
        '`model` must be a `mmcls.classifiers.ImageClassifier` instance.'

    convert_classifier_to_deploy(model, args.save_path)


if __name__ == '__main__':
    main()