test_hooks.py 4.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import shutil
import tempfile

import numpy as np
import pytest
import torch
import torch.nn as nn
from mmcv.runner import build_runner
from mmcv.runner.hooks import Hook, IterTimerHook
from torch.utils.data import DataLoader

import mmcls.core  # noqa: F401


def _build_demo_runner_without_hook(runner_type='EpochBasedRunner',
                                    max_epochs=1,
                                    max_iters=None,
                                    multi_optimziers=False):

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
            self.conv = nn.Conv2d(3, 3, 3)

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

    if multi_optimziers:
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)

    tmp_dir = tempfile.mkdtemp()
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
    return runner


def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
                       max_iters=None,
                       multi_optimziers=False):

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

    runner = _build_demo_runner_without_hook(runner_type, max_epochs,
                                             max_iters, multi_optimziers)

    runner.register_checkpoint_hook(dict(interval=1))
    runner.register_logger_hooks(log_config)
    return runner


class ValueCheckHook(Hook):

    def __init__(self, check_dict, by_epoch=False):
        super().__init__()
        self.check_dict = check_dict
        self.by_epoch = by_epoch

    def after_iter(self, runner):
        if self.by_epoch:
            return
        if runner.iter in self.check_dict:
            for attr, target in self.check_dict[runner.iter].items():
                value = eval(f'runner.{attr}')
                assert np.isclose(value, target), \
                    (f'The value of `runner.{attr}` is {value}, '
                     f'not equals to {target}')

    def after_epoch(self, runner):
        if not self.by_epoch:
            return
        if runner.epoch in self.check_dict:
            for attr, target in self.check_dict[runner.epoch]:
                value = eval(f'runner.{attr}')
                assert np.isclose(value, target), \
                    (f'The value of `runner.{attr}` is {value}, '
                     f'not equals to {target}')


@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_cooldown_hook(multi_optimziers):
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

    # add momentum LR scheduler
    hook_cfg = dict(
        type='CosineAnnealingCooldownLrUpdaterHook',
        by_epoch=False,
        cool_down_time=2,
        cool_down_ratio=0.1,
        min_lr_ratio=0.1,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())

    if multi_optimziers:
        check_hook = ValueCheckHook({
            0: {
                'current_lr()["model1"][0]': 0.02,
                'current_lr()["model2"][0]': 0.01,
            },
            5: {
                'current_lr()["model1"][0]': 0.0075558491,
                'current_lr()["model2"][0]': 0.0037779246,
            },
            9: {
                'current_lr()["model1"][0]': 0.0002,
                'current_lr()["model2"][0]': 0.0001,
            }
        })
    else:
        check_hook = ValueCheckHook({
            0: {
                'current_lr()[0]': 0.02,
            },
            5: {
                'current_lr()[0]': 0.0075558491,
            },
            9: {
                'current_lr()[0]': 0.0002,
            }
        })
    runner.register_hook(check_hook, priority='LOWEST')

    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)