test_neck.py 2.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch

from mmcls.models.necks import (GeneralizedMeanPooling, GlobalAveragePooling,
                                HRFuseScales)


def test_gap_neck():

    # test 1d gap_neck
    neck = GlobalAveragePooling(dim=1)
    # batch_size, num_features, feature_size
    fake_input = torch.rand(1, 16, 24)

    output = neck(fake_input)
    # batch_size, num_features
    assert output.shape == (1, 16)

    # test 1d gap_neck
    neck = GlobalAveragePooling(dim=2)
    # batch_size, num_features, feature_size(2)
    fake_input = torch.rand(1, 16, 24, 24)

    output = neck(fake_input)
    # batch_size, num_features
    assert output.shape == (1, 16)

    # test 1d gap_neck
    neck = GlobalAveragePooling(dim=3)
    # batch_size, num_features, feature_size(3)
    fake_input = torch.rand(1, 16, 24, 24, 5)

    output = neck(fake_input)
    # batch_size, num_features
    assert output.shape == (1, 16)

    with pytest.raises(AssertionError):
        # dim must in [1, 2, 3]
        GlobalAveragePooling(dim='other')


def test_gem_neck():

    # test gem_neck
    neck = GeneralizedMeanPooling()
    # batch_size, num_features, feature_size(2)
    fake_input = torch.rand(1, 16, 24, 24)

    output = neck(fake_input)
    # batch_size, num_features
    assert output.shape == (1, 16)

    # test tuple input gem_neck
    neck = GeneralizedMeanPooling()
    # batch_size, num_features, feature_size(2)
    fake_input = (torch.rand(1, 8, 24, 24), torch.rand(1, 16, 24, 24))

    output = neck(fake_input)
    # batch_size, num_features
    assert output[0].shape == (1, 8)
    assert output[1].shape == (1, 16)

    with pytest.raises(AssertionError):
        # p must be a value greater then 1
        GeneralizedMeanPooling(p=0.5)


def test_hr_fuse_scales():

    in_channels = (18, 32, 64, 128)
    neck = HRFuseScales(in_channels=in_channels, out_channels=1024)

    feat_size = 56
    inputs = []
    for in_channel in in_channels:
        input_tensor = torch.rand(3, in_channel, feat_size, feat_size)
        inputs.append(input_tensor)
        feat_size = feat_size // 2

    with pytest.raises(AssertionError):
        neck(inputs)

    outs = neck(tuple(inputs))
    assert isinstance(outs, tuple)
    assert len(outs) == 1
    assert outs[0].shape == (3, 1024, 7, 7)