test_heads.py 14.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# Copyright (c) OpenMMLab. All rights reserved.
from unittest.mock import patch

import pytest
import torch

from mmcls.models.heads import (ClsHead, ConformerHead, CSRAClsHead,
                                DeiTClsHead, EfficientFormerClsHead,
                                LinearClsHead, MultiLabelClsHead,
                                MultiLabelLinearClsHead, StackedLinearClsHead,
                                VisionTransformerClsHead)


@pytest.mark.parametrize('feat', [torch.rand(4, 10), (torch.rand(4, 10), )])
def test_cls_head(feat):
    fake_gt_label = torch.randint(0, 10, (4, ))

    # test forward_train with cal_acc=True
    head = ClsHead(cal_acc=True)
    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0
    assert 'accuracy' in losses

    # test forward_train with cal_acc=False
    head = ClsHead()
    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0

    # test forward_train with weight
    weight = torch.tensor([0.5, 0.5, 0.5, 0.5])
    losses_ = head.forward_train(feat, fake_gt_label)
    losses = head.forward_train(feat, fake_gt_label, weight=weight)
    assert losses['loss'].item() == losses_['loss'].item() * 0.5

    # test simple_test with post_process
    pred = head.simple_test(feat)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(feat)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(feat, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(feat, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))

    # test pre_logits
    features = head.pre_logits(feat)
    if isinstance(feat, tuple):
        torch.testing.assert_allclose(features, feat[0])
    else:
        torch.testing.assert_allclose(features, feat)


@pytest.mark.parametrize('feat', [torch.rand(4, 3), (torch.rand(4, 3), )])
def test_linear_head(feat):

    fake_gt_label = torch.randint(0, 10, (4, ))

    # test LinearClsHead forward
    head = LinearClsHead(10, 3)
    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0

    # test init weights
    head = LinearClsHead(10, 3)
    head.init_weights()
    assert abs(head.fc.weight).sum() > 0

    # test simple_test with post_process
    pred = head.simple_test(feat)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(feat)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(feat, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(feat, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))

    # test pre_logits
    features = head.pre_logits(feat)
    if isinstance(feat, tuple):
        torch.testing.assert_allclose(features, feat[0])
    else:
        torch.testing.assert_allclose(features, feat)


@pytest.mark.parametrize('feat', [torch.rand(4, 10), (torch.rand(4, 10), )])
def test_multilabel_head(feat):
    head = MultiLabelClsHead()
    fake_gt_label = torch.randint(0, 2, (4, 10))

    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0

    # test simple_test with post_process
    pred = head.simple_test(feat)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(feat)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(feat, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(feat, sigmoid=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.sigmoid(logits))

    # test pre_logits
    features = head.pre_logits(feat)
    if isinstance(feat, tuple):
        torch.testing.assert_allclose(features, feat[0])
    else:
        torch.testing.assert_allclose(features, feat)


@pytest.mark.parametrize('feat', [torch.rand(4, 5), (torch.rand(4, 5), )])
def test_multilabel_linear_head(feat):
    head = MultiLabelLinearClsHead(10, 5)
    fake_gt_label = torch.randint(0, 2, (4, 10))

    head.init_weights()
    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0

    # test simple_test with post_process
    pred = head.simple_test(feat)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(feat)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(feat, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(feat, sigmoid=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.sigmoid(logits))

    # test pre_logits
    features = head.pre_logits(feat)
    if isinstance(feat, tuple):
        torch.testing.assert_allclose(features, feat[0])
    else:
        torch.testing.assert_allclose(features, feat)


@pytest.mark.parametrize('feat', [torch.rand(4, 5), (torch.rand(4, 5), )])
def test_stacked_linear_cls_head(feat):
    # test assertion
    with pytest.raises(AssertionError):
        StackedLinearClsHead(num_classes=3, in_channels=5, mid_channels=10)

    with pytest.raises(AssertionError):
        StackedLinearClsHead(num_classes=-1, in_channels=5, mid_channels=[10])

    fake_gt_label = torch.randint(0, 2, (4, ))  # B, num_classes

    # test forward with default setting
    head = StackedLinearClsHead(
        num_classes=10, in_channels=5, mid_channels=[20])
    head.init_weights()

    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0

    # test simple_test with post_process
    pred = head.simple_test(feat)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(feat)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(feat, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(feat, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))

    # test pre_logits
    features = head.pre_logits(feat)
    assert features.shape == (4, 20)

    # test forward with full function
    head = StackedLinearClsHead(
        num_classes=3,
        in_channels=5,
        mid_channels=[8, 10],
        dropout_rate=0.2,
        norm_cfg=dict(type='BN1d'),
        act_cfg=dict(type='HSwish'))
    head.init_weights()

    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0


def test_vit_head():
    fake_features = ([torch.rand(4, 7, 7, 16), torch.rand(4, 100)], )
    fake_gt_label = torch.randint(0, 10, (4, ))

    # test vit head forward
    head = VisionTransformerClsHead(10, 100)
    losses = head.forward_train(fake_features, fake_gt_label)
    assert not hasattr(head.layers, 'pre_logits')
    assert not hasattr(head.layers, 'act')
    assert losses['loss'].item() > 0

    # test vit head forward with hidden layer
    head = VisionTransformerClsHead(10, 100, hidden_dim=20)
    losses = head.forward_train(fake_features, fake_gt_label)
    assert hasattr(head.layers, 'pre_logits') and hasattr(head.layers, 'act')
    assert losses['loss'].item() > 0

    # test vit head init_weights
    head = VisionTransformerClsHead(10, 100, hidden_dim=20)
    head.init_weights()
    assert abs(head.layers.pre_logits.weight).sum() > 0

    head = VisionTransformerClsHead(10, 100, hidden_dim=20)
    # test simple_test with post_process
    pred = head.simple_test(fake_features)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(fake_features)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(fake_features, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(fake_features, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))

    # test pre_logits
    features = head.pre_logits(fake_features)
    assert features.shape == (4, 20)

    # test assertion
    with pytest.raises(ValueError):
        VisionTransformerClsHead(-1, 100)


def test_conformer_head():
    fake_features = ([torch.rand(4, 64), torch.rand(4, 96)], )
    fake_gt_label = torch.randint(0, 10, (4, ))

    # test conformer head forward
    head = ConformerHead(num_classes=10, in_channels=[64, 96])
    losses = head.forward_train(fake_features, fake_gt_label)
    assert losses['loss'].item() > 0

    # test simple_test with post_process
    pred = head.simple_test(fake_features)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(fake_features)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(fake_features, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(fake_features, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(sum(logits), dim=1))

    # test pre_logits
    features = head.pre_logits(fake_features)
    assert features is fake_features[0]


def test_deit_head():
    fake_features = ([
        torch.rand(4, 7, 7, 16),
        torch.rand(4, 100),
        torch.rand(4, 100)
    ], )
    fake_gt_label = torch.randint(0, 10, (4, ))

    # test deit head forward
    head = DeiTClsHead(num_classes=10, in_channels=100)
    losses = head.forward_train(fake_features, fake_gt_label)
    assert not hasattr(head.layers, 'pre_logits')
    assert not hasattr(head.layers, 'act')
    assert losses['loss'].item() > 0

    # test deit head forward with hidden layer
    head = DeiTClsHead(num_classes=10, in_channels=100, hidden_dim=20)
    losses = head.forward_train(fake_features, fake_gt_label)
    assert hasattr(head.layers, 'pre_logits') and hasattr(head.layers, 'act')
    assert losses['loss'].item() > 0

    # test deit head init_weights
    head = DeiTClsHead(10, 100, hidden_dim=20)
    head.init_weights()
    assert abs(head.layers.pre_logits.weight).sum() > 0

    head = DeiTClsHead(10, 100, hidden_dim=20)
    # test simple_test with post_process
    pred = head.simple_test(fake_features)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(fake_features)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(fake_features, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(fake_features, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))

    # test pre_logits
    cls_token, dist_token = head.pre_logits(fake_features)
    assert cls_token.shape == (4, 20)
    assert dist_token.shape == (4, 20)

    # test assertion
    with pytest.raises(ValueError):
        DeiTClsHead(-1, 100)


def test_efficientformer_head():
    fake_features = (torch.rand(4, 64), )
    fake_gt_label = torch.randint(0, 10, (4, ))

    # Test without distillation head
    head = EfficientFormerClsHead(
        num_classes=10, in_channels=64, distillation=False)

    # test EfficientFormer head forward
    losses = head.forward_train(fake_features, fake_gt_label)
    assert losses['loss'].item() > 0

    # test simple_test with post_process
    pred = head.simple_test(fake_features)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(fake_features)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(fake_features, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(fake_features, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))

    # test pre_logits
    features = head.pre_logits(fake_features)
    assert features is fake_features[0]

    # Test without distillation head
    head = EfficientFormerClsHead(num_classes=10, in_channels=64)
    assert hasattr(head, 'head')
    assert hasattr(head, 'dist_head')

    # Test loss
    with pytest.raises(NotImplementedError):
        losses = head.forward_train(fake_features, fake_gt_label)

    # test simple_test with post_process
    pred = head.simple_test(fake_features)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(fake_features)
        assert pred.shape == (4, 10)

    # test simple_test without post_process
    pred = head.simple_test(fake_features, post_process=False)
    assert isinstance(pred, torch.Tensor) and pred.shape == (4, 10)
    logits = head.simple_test(fake_features, softmax=False, post_process=False)
    torch.testing.assert_allclose(pred, torch.softmax(logits, dim=1))

    # test pre_logits
    features = head.pre_logits(fake_features)
    assert features is fake_features[0]


@pytest.mark.parametrize(
    'feat', [torch.rand(4, 20, 20, 30), (torch.rand(4, 20, 20, 30), )])
def test_csra_head(feat):
    head = CSRAClsHead(num_classes=10, in_channels=20, num_heads=1, lam=0.1)
    fake_gt_label = torch.randint(0, 2, (4, 10))

    losses = head.forward_train(feat, fake_gt_label)
    assert losses['loss'].item() > 0

    # test simple_test with post_process
    pred = head.simple_test(feat)
    assert isinstance(pred, list) and len(pred) == 4
    with patch('torch.onnx.is_in_onnx_export', return_value=True):
        pred = head.simple_test(feat)
        assert pred.shape == (4, 10)

    # test pre_logits
    features = head.pre_logits(feat)
    if isinstance(feat, tuple):
        torch.testing.assert_allclose(features, feat[0])
    else:
        torch.testing.assert_allclose(features, feat)