test_builder.py 9.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from copy import deepcopy
from unittest.mock import patch

import torch
from mmcv.utils import digit_version

from mmcls.datasets import ImageNet, build_dataloader, build_dataset
from mmcls.datasets.dataset_wrappers import (ClassBalancedDataset,
                                             ConcatDataset, KFoldDataset,
                                             RepeatDataset)


class TestDataloaderBuilder():

    @classmethod
    def setup_class(cls):
        cls.data = list(range(20))
        cls.samples_per_gpu = 5
        cls.workers_per_gpu = 1

    @patch('mmcls.datasets.builder.get_dist_info', return_value=(0, 1))
    def test_single_gpu(self, _):
        common_cfg = dict(
            dataset=self.data,
            samples_per_gpu=self.samples_per_gpu,
            workers_per_gpu=self.workers_per_gpu,
            dist=False)

        # Test default config
        dataloader = build_dataloader(**common_cfg)

        if digit_version(torch.__version__) >= digit_version('1.8.0'):
            assert dataloader.persistent_workers
        elif hasattr(dataloader, 'persistent_workers'):
            assert not dataloader.persistent_workers

        assert dataloader.batch_size == self.samples_per_gpu
        assert dataloader.num_workers == self.workers_per_gpu
        assert not all(
            torch.cat(list(iter(dataloader))) == torch.tensor(self.data))

        # Test without shuffle
        dataloader = build_dataloader(**common_cfg, shuffle=False)
        assert all(
            torch.cat(list(iter(dataloader))) == torch.tensor(self.data))

        # Test with custom sampler_cfg
        dataloader = build_dataloader(
            **common_cfg,
            sampler_cfg=dict(type='RepeatAugSampler', selected_round=0),
            shuffle=False)
        expect = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6]
        assert all(torch.cat(list(iter(dataloader))) == torch.tensor(expect))

    @patch('mmcls.datasets.builder.get_dist_info', return_value=(0, 1))
    def test_multi_gpu(self, _):
        common_cfg = dict(
            dataset=self.data,
            samples_per_gpu=self.samples_per_gpu,
            workers_per_gpu=self.workers_per_gpu,
            num_gpus=2,
            dist=False)

        # Test default config
        dataloader = build_dataloader(**common_cfg)

        if digit_version(torch.__version__) >= digit_version('1.8.0'):
            assert dataloader.persistent_workers
        elif hasattr(dataloader, 'persistent_workers'):
            assert not dataloader.persistent_workers

        assert dataloader.batch_size == self.samples_per_gpu * 2
        assert dataloader.num_workers == self.workers_per_gpu * 2
        assert not all(
            torch.cat(list(iter(dataloader))) == torch.tensor(self.data))

        # Test without shuffle
        dataloader = build_dataloader(**common_cfg, shuffle=False)
        assert all(
            torch.cat(list(iter(dataloader))) == torch.tensor(self.data))

        # Test with custom sampler_cfg
        dataloader = build_dataloader(
            **common_cfg,
            sampler_cfg=dict(type='RepeatAugSampler', selected_round=0),
            shuffle=False)
        expect = torch.tensor(
            [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6])
        assert all(torch.cat(list(iter(dataloader))) == expect)

    @patch('mmcls.datasets.builder.get_dist_info', return_value=(1, 2))
    def test_distributed(self, _):
        common_cfg = dict(
            dataset=self.data,
            samples_per_gpu=self.samples_per_gpu,
            workers_per_gpu=self.workers_per_gpu,
            num_gpus=2,  # num_gpus will be ignored in distributed environment.
            dist=True)

        # Test default config
        dataloader = build_dataloader(**common_cfg)

        if digit_version(torch.__version__) >= digit_version('1.8.0'):
            assert dataloader.persistent_workers
        elif hasattr(dataloader, 'persistent_workers'):
            assert not dataloader.persistent_workers

        assert dataloader.batch_size == self.samples_per_gpu
        assert dataloader.num_workers == self.workers_per_gpu
        non_expect = torch.tensor(self.data[1::2])
        assert not all(torch.cat(list(iter(dataloader))) == non_expect)

        # Test without shuffle
        dataloader = build_dataloader(**common_cfg, shuffle=False)
        expect = torch.tensor(self.data[1::2])
        assert all(torch.cat(list(iter(dataloader))) == expect)

        # Test with custom sampler_cfg
        dataloader = build_dataloader(
            **common_cfg,
            sampler_cfg=dict(type='RepeatAugSampler', selected_round=0),
            shuffle=False)
        expect = torch.tensor(
            [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6][1::2])
        assert all(torch.cat(list(iter(dataloader))) == expect)


class TestDatasetBuilder():

    @classmethod
    def setup_class(cls):
        data_prefix = osp.join(osp.dirname(__file__), '../data/dataset')
        cls.dataset_cfg = dict(
            type='ImageNet',
            data_prefix=data_prefix,
            ann_file=osp.join(data_prefix, 'ann.txt'),
            pipeline=[],
            test_mode=False,
        )

    def test_normal_dataset(self):
        # Test build
        dataset = build_dataset(self.dataset_cfg)
        assert isinstance(dataset, ImageNet)
        assert dataset.test_mode == self.dataset_cfg['test_mode']

        # Test default_args
        dataset = build_dataset(self.dataset_cfg, {'test_mode': True})
        assert dataset.test_mode == self.dataset_cfg['test_mode']

        cp_cfg = deepcopy(self.dataset_cfg)
        cp_cfg.pop('test_mode')
        dataset = build_dataset(cp_cfg, {'test_mode': True})
        assert dataset.test_mode

    def test_concat_dataset(self):
        # Test build
        dataset = build_dataset([self.dataset_cfg, self.dataset_cfg])
        assert isinstance(dataset, ConcatDataset)
        assert dataset.datasets[0].test_mode == self.dataset_cfg['test_mode']

        # Test default_args
        dataset = build_dataset([self.dataset_cfg, self.dataset_cfg],
                                {'test_mode': True})
        assert dataset.datasets[0].test_mode == self.dataset_cfg['test_mode']

        cp_cfg = deepcopy(self.dataset_cfg)
        cp_cfg.pop('test_mode')
        dataset = build_dataset([cp_cfg, cp_cfg], {'test_mode': True})
        assert dataset.datasets[0].test_mode

    def test_repeat_dataset(self):
        # Test build
        dataset = build_dataset(
            dict(type='RepeatDataset', dataset=self.dataset_cfg, times=3))
        assert isinstance(dataset, RepeatDataset)
        assert dataset.dataset.test_mode == self.dataset_cfg['test_mode']

        # Test default_args
        dataset = build_dataset(
            dict(type='RepeatDataset', dataset=self.dataset_cfg, times=3),
            {'test_mode': True})
        assert dataset.dataset.test_mode == self.dataset_cfg['test_mode']

        cp_cfg = deepcopy(self.dataset_cfg)
        cp_cfg.pop('test_mode')
        dataset = build_dataset(
            dict(type='RepeatDataset', dataset=cp_cfg, times=3),
            {'test_mode': True})
        assert dataset.dataset.test_mode

    def test_class_balance_dataset(self):
        # Test build
        dataset = build_dataset(
            dict(
                type='ClassBalancedDataset',
                dataset=self.dataset_cfg,
                oversample_thr=1.,
            ))
        assert isinstance(dataset, ClassBalancedDataset)
        assert dataset.dataset.test_mode == self.dataset_cfg['test_mode']

        # Test default_args
        dataset = build_dataset(
            dict(
                type='ClassBalancedDataset',
                dataset=self.dataset_cfg,
                oversample_thr=1.,
            ), {'test_mode': True})
        assert dataset.dataset.test_mode == self.dataset_cfg['test_mode']

        cp_cfg = deepcopy(self.dataset_cfg)
        cp_cfg.pop('test_mode')
        dataset = build_dataset(
            dict(
                type='ClassBalancedDataset',
                dataset=cp_cfg,
                oversample_thr=1.,
            ), {'test_mode': True})
        assert dataset.dataset.test_mode

    def test_kfold_dataset(self):
        # Test build
        dataset = build_dataset(
            dict(
                type='KFoldDataset',
                dataset=self.dataset_cfg,
                fold=0,
                num_splits=5,
                test_mode=False,
            ))
        assert isinstance(dataset, KFoldDataset)
        assert not dataset.test_mode
        assert dataset.dataset.test_mode == self.dataset_cfg['test_mode']

        # Test default_args
        dataset = build_dataset(
            dict(
                type='KFoldDataset',
                dataset=self.dataset_cfg,
                fold=0,
                num_splits=5,
                test_mode=False,
            ),
            default_args={
                'test_mode': True,
                'classes': [1, 2, 3]
            })
        assert not dataset.test_mode
        assert dataset.dataset.test_mode == self.dataset_cfg['test_mode']
        assert dataset.dataset.CLASSES == [1, 2, 3]

        cp_cfg = deepcopy(self.dataset_cfg)
        cp_cfg.pop('test_mode')
        dataset = build_dataset(
            dict(
                type='KFoldDataset',
                dataset=self.dataset_cfg,
                fold=0,
                num_splits=5,
            ),
            default_args={
                'test_mode': True,
                'classes': [1, 2, 3]
            })
        # The test_mode in default_args will be passed to KFoldDataset
        assert dataset.test_mode
        assert not dataset.dataset.test_mode
        # Other default_args will be passed to child dataset.
        assert dataset.dataset.CLASSES == [1, 2, 3]