resnet.py 23.2 KB
Newer Older
1
2
# Copyright (c) OpenMMLab. All rights reserved.

unknown's avatar
unknown committed
3
4
import torch.nn as nn
import torch.utils.checkpoint as cp
5
6
7
8
from mmcv.cnn import (ConvModule, build_activation_layer, build_conv_layer,
                      build_norm_layer, constant_init)
from mmcv.cnn.bricks import DropPath
from mmcv.runner import BaseModule
unknown's avatar
unknown committed
9
10
11
12
13
from mmcv.utils.parrots_wrapper import _BatchNorm

from ..builder import BACKBONES
from .base_backbone import BaseBackbone

14
15
eps = 1.0e-5

unknown's avatar
unknown committed
16

17
class BasicBlock(BaseModule):
unknown's avatar
unknown committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    """BasicBlock for ResNet.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int): The ratio of ``out_channels/mid_channels`` where
            ``mid_channels`` is the output channels of conv1. This is a
            reserved argument in BasicBlock and should always be 1. Default: 1.
        stride (int): stride of the block. Default: 1
        dilation (int): dilation of convolution. Default: 1
        downsample (nn.Module, optional): downsample operation on identity
            branch. Default: None.
        style (str): `pytorch` or `caffe`. It is unused and reserved for
            unified API with Bottleneck.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        conv_cfg (dict, optional): dictionary to construct and config conv
            layer. Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=1,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
50
51
52
53
54
                 norm_cfg=dict(type='BN'),
                 drop_path_rate=0.0,
                 act_cfg=dict(type='ReLU', inplace=True),
                 init_cfg=None):
        super(BasicBlock, self).__init__(init_cfg=init_cfg)
unknown's avatar
unknown committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert self.expansion == 1
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            norm_cfg, out_channels, postfix=2)

        self.conv1 = build_conv_layer(
            conv_cfg,
            in_channels,
            self.mid_channels,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            out_channels,
            3,
            padding=1,
            bias=False)
        self.add_module(self.norm2_name, norm2)

92
        self.relu = build_activation_layer(act_cfg)
unknown's avatar
unknown committed
93
        self.downsample = downsample
94
95
        self.drop_path = DropPath(drop_prob=drop_path_rate
                                  ) if drop_path_rate > eps else nn.Identity()
unknown's avatar
unknown committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.norm2(out)

            if self.downsample is not None:
                identity = self.downsample(x)

120
121
            out = self.drop_path(out)

unknown's avatar
unknown committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


136
class Bottleneck(BaseModule):
unknown's avatar
unknown committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    """Bottleneck block for ResNet.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int): The ratio of ``out_channels/mid_channels`` where
            ``mid_channels`` is the input/output channels of conv2. Default: 4.
        stride (int): stride of the block. Default: 1
        dilation (int): dilation of convolution. Default: 1
        downsample (nn.Module, optional): downsample operation on identity
            branch. Default: None.
        style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the
            stride-two layer is the 3x3 conv layer, otherwise the stride-two
            layer is the first 1x1 conv layer. Default: "pytorch".
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        conv_cfg (dict, optional): dictionary to construct and config conv
            layer. Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=4,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
169
170
171
172
173
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU', inplace=True),
                 drop_path_rate=0.0,
                 init_cfg=None):
        super(Bottleneck, self).__init__(init_cfg=init_cfg)
unknown's avatar
unknown committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        assert style in ['pytorch', 'caffe']

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, out_channels, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            in_channels,
            self.mid_channels,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            self.mid_channels,
            kernel_size=3,
            stride=self.conv2_stride,
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            out_channels,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

229
        self.relu = build_activation_layer(act_cfg)
unknown's avatar
unknown committed
230
        self.downsample = downsample
231
232
        self.drop_path = DropPath(drop_prob=drop_path_rate
                                  ) if drop_path_rate > eps else nn.Identity()
unknown's avatar
unknown committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

    @property
    def norm3(self):
        return getattr(self, self.norm3_name)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.norm2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.downsample is not None:
                identity = self.downsample(x)

265
266
            out = self.drop_path(out)

unknown's avatar
unknown committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def get_expansion(block, expansion=None):
    """Get the expansion of a residual block.

    The block expansion will be obtained by the following order:

    1. If ``expansion`` is given, just return it.
    2. If ``block`` has the attribute ``expansion``, then return
       ``block.expansion``.
    3. Return the default value according the the block type:
       1 for ``BasicBlock`` and 4 for ``Bottleneck``.

    Args:
        block (class): The block class.
        expansion (int | None): The given expansion ratio.

    Returns:
        int: The expansion of the block.
    """
    if isinstance(expansion, int):
        assert expansion > 0
    elif expansion is None:
        if hasattr(block, 'expansion'):
            expansion = block.expansion
        elif issubclass(block, BasicBlock):
            expansion = 1
        elif issubclass(block, Bottleneck):
            expansion = 4
        else:
            raise TypeError(f'expansion is not specified for {block.__name__}')
    else:
        raise TypeError('expansion must be an integer or None')

    return expansion


class ResLayer(nn.Sequential):
    """ResLayer to build ResNet style backbone.

    Args:
        block (nn.Module): Residual block used to build ResLayer.
        num_blocks (int): Number of blocks.
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int, optional): The expansion for BasicBlock/Bottleneck.
            If not specified, it will firstly be obtained via
            ``block.expansion``. If the block has no attribute "expansion",
            the following default values will be used: 1 for BasicBlock and
            4 for Bottleneck. Default: None.
        stride (int): stride of the first block. Default: 1.
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False
        conv_cfg (dict, optional): dictionary to construct and config conv
            layer. Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 block,
                 num_blocks,
                 in_channels,
                 out_channels,
                 expansion=None,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 **kwargs):
        self.block = block
        self.expansion = get_expansion(block, expansion)

        downsample = None
        if stride != 1 or in_channels != out_channels:
            downsample = []
            conv_stride = stride
            if avg_down and stride != 1:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(
                        kernel_size=stride,
                        stride=stride,
                        ceil_mode=True,
                        count_include_pad=False))
            downsample.extend([
                build_conv_layer(
                    conv_cfg,
                    in_channels,
                    out_channels,
                    kernel_size=1,
                    stride=conv_stride,
                    bias=False),
                build_norm_layer(norm_cfg, out_channels)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        layers.append(
            block(
                in_channels=in_channels,
                out_channels=out_channels,
                expansion=self.expansion,
                stride=stride,
                downsample=downsample,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                **kwargs))
        in_channels = out_channels
        for i in range(1, num_blocks):
            layers.append(
                block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    expansion=self.expansion,
                    stride=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
        super(ResLayer, self).__init__(*layers)


@BACKBONES.register_module()
class ResNet(BaseBackbone):
    """ResNet backbone.

405
    Please refer to the `paper <https://arxiv.org/abs/1512.03385>`__ for
unknown's avatar
unknown committed
406
407
408
409
410
411
412
413
414
415
416
417
    details.

    Args:
        depth (int): Network depth, from {18, 34, 50, 101, 152}.
        in_channels (int): Number of input image channels. Default: 3.
        stem_channels (int): Output channels of the stem layer. Default: 64.
        base_channels (int): Middle channels of the first stage. Default: 64.
        num_stages (int): Stages of the network. Default: 4.
        strides (Sequence[int]): Strides of the first block of each stage.
            Default: ``(1, 2, 2, 2)``.
        dilations (Sequence[int]): Dilation of each stage.
            Default: ``(1, 1, 1, 1)``.
418
419
        out_indices (Sequence[int]): Output from which stages.
            Default: ``(3, )``.
unknown's avatar
unknown committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
            Default: False.
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Default: -1.
        conv_cfg (dict | None): The config dict for conv layers. Default: None.
        norm_cfg (dict): The config dict for norm layers.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        zero_init_residual (bool): Whether to use zero init for last norm layer
            in resblocks to let them behave as identity. Default: True.

    Example:
        >>> from mmcls.models import ResNet
        >>> import torch
        >>> self = ResNet(depth=18)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 32, 32)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 64, 8, 8)
        (1, 128, 4, 4)
        (1, 256, 2, 2)
        (1, 512, 1, 1)
    """

    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self,
                 depth,
                 in_channels=3,
                 stem_channels=64,
                 base_channels=64,
                 expansion=None,
                 num_stages=4,
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(3, ),
                 style='pytorch',
                 deep_stem=False,
                 avg_down=False,
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 norm_eval=False,
                 with_cp=False,
                 zero_init_residual=True,
                 init_cfg=[
                     dict(type='Kaiming', layer=['Conv2d']),
                     dict(
                         type='Constant',
                         val=1,
                         layer=['_BatchNorm', 'GroupNorm'])
487
488
                 ],
                 drop_path_rate=0.0):
unknown's avatar
unknown committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        super(ResNet, self).__init__(init_cfg)
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
        self.depth = depth
        self.stem_channels = stem_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert num_stages >= 1 and num_stages <= 4
        self.strides = strides
        self.dilations = dilations
        assert len(strides) == len(dilations) == num_stages
        self.out_indices = out_indices
        assert max(out_indices) < num_stages
        self.style = style
        self.deep_stem = deep_stem
        self.avg_down = avg_down
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.with_cp = with_cp
        self.norm_eval = norm_eval
        self.zero_init_residual = zero_init_residual
        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        self.expansion = get_expansion(self.block, expansion)

        self._make_stem_layer(in_channels, stem_channels)

        self.res_layers = []
        _in_channels = stem_channels
        _out_channels = base_channels * self.expansion
        for i, num_blocks in enumerate(self.stage_blocks):
            stride = strides[i]
            dilation = dilations[i]
            res_layer = self.make_res_layer(
                block=self.block,
                num_blocks=num_blocks,
                in_channels=_in_channels,
                out_channels=_out_channels,
                expansion=self.expansion,
                stride=stride,
                dilation=dilation,
                style=self.style,
                avg_down=self.avg_down,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
535
536
                norm_cfg=norm_cfg,
                drop_path_rate=drop_path_rate)
unknown's avatar
unknown committed
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            _in_channels = _out_channels
            _out_channels *= 2
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self._freeze_stages()

        self.feat_dim = res_layer[-1].out_channels

    def make_res_layer(self, **kwargs):
        return ResLayer(**kwargs)

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    def _make_stem_layer(self, in_channels, stem_channels):
        if self.deep_stem:
            self.stem = nn.Sequential(
                ConvModule(
                    in_channels,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    inplace=True),
                ConvModule(
                    stem_channels // 2,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    inplace=True),
                ConvModule(
                    stem_channels // 2,
                    stem_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg,
                    inplace=True))
        else:
            self.conv1 = build_conv_layer(
                self.conv_cfg,
                in_channels,
                stem_channels,
                kernel_size=7,
                stride=2,
                padding=3,
                bias=False)
            self.norm1_name, norm1 = build_norm_layer(
                self.norm_cfg, stem_channels, postfix=1)
            self.add_module(self.norm1_name, norm1)
            self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            if self.deep_stem:
                self.stem.eval()
                for param in self.stem.parameters():
                    param.requires_grad = False
            else:
                self.norm1.eval()
                for m in [self.conv1, self.norm1]:
                    for param in m.parameters():
                        param.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = getattr(self, f'layer{i}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def init_weights(self):
        super(ResNet, self).init_weights()

620
621
622
623
624
        if (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):
            # Suppress zero_init_residual if use pretrained model.
            return

unknown's avatar
unknown committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
        if self.zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    constant_init(m.norm3, 0)
                elif isinstance(m, BasicBlock):
                    constant_init(m.norm2, 0)

    def forward(self, x):
        if self.deep_stem:
            x = self.stem(x)
        else:
            x = self.conv1(x)
            x = self.norm1(x)
            x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
646
        return tuple(outs)
unknown's avatar
unknown committed
647
648
649
650
651
652
653
654
655
656
657

    def train(self, mode=True):
        super(ResNet, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()


658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
@BACKBONES.register_module()
class ResNetV1c(ResNet):
    """ResNetV1c backbone.

    This variant is described in `Bag of Tricks.
    <https://arxiv.org/pdf/1812.01187.pdf>`_.

    Compared with default ResNet(ResNetV1b), ResNetV1c replaces the 7x7 conv
    in the input stem with three 3x3 convs.
    """

    def __init__(self, **kwargs):
        super(ResNetV1c, self).__init__(
            deep_stem=True, avg_down=False, **kwargs)


unknown's avatar
unknown committed
674
675
@BACKBONES.register_module()
class ResNetV1d(ResNet):
676
    """ResNetV1d backbone.
unknown's avatar
unknown committed
677

678
    This variant is described in `Bag of Tricks.
unknown's avatar
unknown committed
679
680
681
682
683
684
685
686
687
688
    <https://arxiv.org/pdf/1812.01187.pdf>`_.

    Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in
    the input stem with three 3x3 convs. And in the downsampling block, a 2x2
    avg_pool with stride 2 is added before conv, whose stride is changed to 1.
    """

    def __init__(self, **kwargs):
        super(ResNetV1d, self).__init__(
            deep_stem=True, avg_down=True, **kwargs)