builder.py 6.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import platform
import random
from functools import partial

import numpy as np
import torch
from mmcv.parallel import collate
from mmcv.runner import get_dist_info
from mmcv.utils import Registry, build_from_cfg, digit_version
from torch.utils.data import DataLoader

try:
    from mmcv.utils import IS_IPU_AVAILABLE
except ImportError:
    IS_IPU_AVAILABLE = False

if platform.system() != 'Windows':
    # https://github.com/pytorch/pytorch/issues/973
    import resource
    rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
    hard_limit = rlimit[1]
    soft_limit = min(4096, hard_limit)
    resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))

DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')
SAMPLERS = Registry('sampler')


def build_dataset(cfg, default_args=None):
    from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset,
                                   KFoldDataset, RepeatDataset)
    if isinstance(cfg, (list, tuple)):
        dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
    elif cfg['type'] == 'ConcatDataset':
        dataset = ConcatDataset(
            [build_dataset(c, default_args) for c in cfg['datasets']],
            separate_eval=cfg.get('separate_eval', True))
    elif cfg['type'] == 'RepeatDataset':
        dataset = RepeatDataset(
            build_dataset(cfg['dataset'], default_args), cfg['times'])
    elif cfg['type'] == 'ClassBalancedDataset':
        dataset = ClassBalancedDataset(
            build_dataset(cfg['dataset'], default_args), cfg['oversample_thr'])
    elif cfg['type'] == 'KFoldDataset':
        cp_cfg = copy.deepcopy(cfg)
        if cp_cfg.get('test_mode', None) is None:
            cp_cfg['test_mode'] = (default_args or {}).pop('test_mode', False)
        cp_cfg['dataset'] = build_dataset(cp_cfg['dataset'], default_args)
        cp_cfg.pop('type')
        dataset = KFoldDataset(**cp_cfg)
    else:
        dataset = build_from_cfg(cfg, DATASETS, default_args)

    return dataset


def build_dataloader(dataset,
                     samples_per_gpu,
                     workers_per_gpu,
                     num_gpus=1,
                     dist=True,
                     shuffle=True,
                     round_up=True,
                     seed=None,
                     pin_memory=True,
                     persistent_workers=True,
                     sampler_cfg=None,
                     **kwargs):
    """Build PyTorch DataLoader.

    In distributed training, each GPU/process has a dataloader.
    In non-distributed training, there is only one dataloader for all GPUs.

    Args:
        dataset (Dataset): A PyTorch dataset.
        samples_per_gpu (int): Number of training samples on each GPU, i.e.,
            batch size of each GPU.
        workers_per_gpu (int): How many subprocesses to use for data loading
            for each GPU.
        num_gpus (int): Number of GPUs. Only used in non-distributed training.
        dist (bool): Distributed training/test or not. Default: True.
        shuffle (bool): Whether to shuffle the data at every epoch.
            Default: True.
        round_up (bool): Whether to round up the length of dataset by adding
            extra samples to make it evenly divisible. Default: True.
        pin_memory (bool): Whether to use pin_memory in DataLoader.
            Default: True
        persistent_workers (bool): If True, the data loader will not shutdown
            the worker processes after a dataset has been consumed once.
            This allows to maintain the workers Dataset instances alive.
            The argument also has effect in PyTorch>=1.7.0.
            Default: True
        sampler_cfg (dict): sampler configuration to override the default
            sampler
        kwargs: any keyword argument to be used to initialize DataLoader

    Returns:
        DataLoader: A PyTorch dataloader.
    """
    rank, world_size = get_dist_info()

    # Custom sampler logic
    if sampler_cfg:
        # shuffle=False when val and test
        sampler_cfg.update(shuffle=shuffle)
        sampler = build_sampler(
            sampler_cfg,
            default_args=dict(
                dataset=dataset, num_replicas=world_size, rank=rank,
                seed=seed))
    # Default sampler logic
    elif dist:
        sampler = build_sampler(
            dict(
                type='DistributedSampler',
                dataset=dataset,
                num_replicas=world_size,
                rank=rank,
                shuffle=shuffle,
                round_up=round_up,
                seed=seed))
    else:
        sampler = None

    # If sampler exists, turn off dataloader shuffle
    if sampler is not None:
        shuffle = False

    if dist:
        batch_size = samples_per_gpu
        num_workers = workers_per_gpu
    else:
        batch_size = num_gpus * samples_per_gpu
        num_workers = num_gpus * workers_per_gpu

    init_fn = partial(
        worker_init_fn, num_workers=num_workers, rank=rank,
        seed=seed) if seed is not None else None

    if digit_version(torch.__version__) >= digit_version('1.8.0'):
        kwargs['persistent_workers'] = persistent_workers
    if IS_IPU_AVAILABLE:
        from mmcv.device.ipu import IPUDataLoader
        data_loader = IPUDataLoader(
            dataset,
            None,
            batch_size=samples_per_gpu,
            num_workers=num_workers,
            shuffle=shuffle,
            worker_init_fn=init_fn,
            **kwargs)
    else:
        data_loader = DataLoader(
            dataset,
            batch_size=batch_size,
            sampler=sampler,
            num_workers=num_workers,
            collate_fn=partial(collate, samples_per_gpu=samples_per_gpu),
            pin_memory=pin_memory,
            shuffle=shuffle,
            worker_init_fn=init_fn,
            **kwargs)

    return data_loader


def worker_init_fn(worker_id, num_workers, rank, seed):
    # The seed of each worker equals to
    # num_worker * rank + worker_id + user_seed
    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)
    torch.manual_seed(worker_seed)


def build_sampler(cfg, default_args=None):
    if cfg is None:
        return None
    else:
        return build_from_cfg(cfg, SAMPLERS, default_args=default_args)