changelog.md 37.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# Changelog

## v0.24.1(31/10/2022)

### New Features

- Support mmcls with NPU backend. ([#1072](https://github.com/open-mmlab/mmclassification/pull/1072))

### Bug Fixes

- Fix performance issue in convnext DDP train. ([#1098](https://github.com/open-mmlab/mmclassification/pull/1098))

## v0.24.0(30/9/2022)

### Highlights

- Support HorNet, EfficientFormerm, SwinTransformer V2 and MViT backbones.
- Support Standford Cars dataset.

### New Features

- Support HorNet Backbone. ([#1013](https://github.com/open-mmlab/mmclassification/pull/1013))
- Support EfficientFormer. ([#954](https://github.com/open-mmlab/mmclassification/pull/954))
- Support Stanford Cars dataset. ([#893](https://github.com/open-mmlab/mmclassification/pull/893))
- Support CSRA head. ([#881](https://github.com/open-mmlab/mmclassification/pull/881))
- Support Swin Transform V2. ([#799](https://github.com/open-mmlab/mmclassification/pull/799))
- Support MViT and add checkpoints. ([#924](https://github.com/open-mmlab/mmclassification/pull/924))

### Improvements

- \[Improve\] replace loop of progressbar in api/test. ([#878](https://github.com/open-mmlab/mmclassification/pull/878))
- \[Enhance\] RepVGG for YOLOX-PAI. ([#1025](https://github.com/open-mmlab/mmclassification/pull/1025))
- \[Enhancement\] Update VAN. ([#1017](https://github.com/open-mmlab/mmclassification/pull/1017))
- \[Refactor\] Re-write `get_sinusoid_encoding` from third-party implementation. ([#965](https://github.com/open-mmlab/mmclassification/pull/965))
- \[Improve\] Upgrade onnxsim to v0.4.0. ([#915](https://github.com/open-mmlab/mmclassification/pull/915))
- \[Improve\] Fixed typo in `RepVGG`. ([#985](https://github.com/open-mmlab/mmclassification/pull/985))
- \[Improve\] Using `train_step` instead of `forward` in PreciseBNHook ([#964](https://github.com/open-mmlab/mmclassification/pull/964))
- \[Improve\] Use `forward_dummy` to calculate FLOPS. ([#953](https://github.com/open-mmlab/mmclassification/pull/953))

### Bug Fixes

- Fix warning with `torch.meshgrid`. ([#860](https://github.com/open-mmlab/mmclassification/pull/860))
- Add matplotlib minimum version requriments. ([#909](https://github.com/open-mmlab/mmclassification/pull/909))
- val loader should not drop last by default. ([#857](https://github.com/open-mmlab/mmclassification/pull/857))
- Fix config.device bug in toturial. ([#1059](https://github.com/open-mmlab/mmclassification/pull/1059))
- Fix attenstion clamp max params ([#1034](https://github.com/open-mmlab/mmclassification/pull/1034))
- Fix device mismatch in Swin-v2. ([#976](https://github.com/open-mmlab/mmclassification/pull/976))
- Fix the output position of Swin-Transformer. ([#947](https://github.com/open-mmlab/mmclassification/pull/947))

### Docs Update

- Fix typo in config.md. ([#827](https://github.com/open-mmlab/mmclassification/pull/827))
- Add version for torchvision to avoide error. ([#903](https://github.com/open-mmlab/mmclassification/pull/903))
- Fixed typo for `--out-dir` option of analyze_results.py. ([#898](https://github.com/open-mmlab/mmclassification/pull/898))
- Refine the docstring of RegNet ([#935](https://github.com/open-mmlab/mmclassification/pull/935))

## v0.23.2(28/7/2022)

### New Features

- Support MPS device. ([#894](https://github.com/open-mmlab/mmclassification/pull/894))

### Bug Fixes

- Fix a bug in Albu which caused crashing. ([#918](https://github.com/open-mmlab/mmclassification/pull/918))

## v0.23.1(2/6/2022)

### New Features

- Dedicated MMClsWandbHook for MMClassification (Weights and Biases Integration) ([#764](https://github.com/open-mmlab/mmclassification/pull/764))

### Improvements

- Use mdformat instead of markdownlint to format markdown. ([#844](https://github.com/open-mmlab/mmclassification/pull/844))

### Bug Fixes

- Fix wrong `--local_rank`.

### Docs Update

- Update install tutorials. ([#854](https://github.com/open-mmlab/mmclassification/pull/854))
- Fix wrong link in README. ([#835](https://github.com/open-mmlab/mmclassification/pull/835))

## v0.23.0(1/5/2022)

### New Features

- Support DenseNet. ([#750](https://github.com/open-mmlab/mmclassification/pull/750))
- Support VAN. ([#739](https://github.com/open-mmlab/mmclassification/pull/739))

### Improvements

- Support training on IPU and add fine-tuning configs of ViT. ([#723](https://github.com/open-mmlab/mmclassification/pull/723))

### Docs Update

- New style API reference, and easier to use! Welcome [view it](https://mmclassification.readthedocs.io/en/master/api/models.html). ([#774](https://github.com/open-mmlab/mmclassification/pull/774))

## v0.22.1(15/4/2022)

### New Features

- \[Feature\] Support resize relative position embedding in `SwinTransformer`. ([#749](https://github.com/open-mmlab/mmclassification/pull/749))
- \[Feature\] Add PoolFormer backbone and checkpoints. ([#746](https://github.com/open-mmlab/mmclassification/pull/746))

### Improvements

- \[Enhance\] Improve CPE performance by reduce memory copy. ([#762](https://github.com/open-mmlab/mmclassification/pull/762))
- \[Enhance\] Add extra dataloader settings in configs. ([#752](https://github.com/open-mmlab/mmclassification/pull/752))

## v0.22.0(30/3/2022)

### Highlights

- Support a series of CSP Network, such as CSP-ResNet, CSP-ResNeXt and CSP-DarkNet.
- A new `CustomDataset` class to help you build dataset of yourself!
- Support ConvMixer, RepMLP and new dataset - CUB dataset.

### New Features

- \[Feature\] Add CSPNet and backbone and checkpoints ([#735](https://github.com/open-mmlab/mmclassification/pull/735))
- \[Feature\] Add `CustomDataset`. ([#738](https://github.com/open-mmlab/mmclassification/pull/738))
- \[Feature\] Add diff seeds to diff ranks.  ([#744](https://github.com/open-mmlab/mmclassification/pull/744))
- \[Feature\] Support ConvMixer. ([#716](https://github.com/open-mmlab/mmclassification/pull/716))
- \[Feature\] Our `dist_train` & `dist_test` tools support distributed training on multiple machines. ([#734](https://github.com/open-mmlab/mmclassification/pull/734))
- \[Feature\] Add RepMLP backbone and checkpoints. ([#709](https://github.com/open-mmlab/mmclassification/pull/709))
- \[Feature\] Support CUB dataset. ([#703](https://github.com/open-mmlab/mmclassification/pull/703))
- \[Feature\] Support ResizeMix. ([#676](https://github.com/open-mmlab/mmclassification/pull/676))

### Improvements

- \[Enhance\] Use `--a-b` instead of `--a_b` in arguments. ([#754](https://github.com/open-mmlab/mmclassification/pull/754))
- \[Enhance\] Add `get_cat_ids` and `get_gt_labels` to KFoldDataset. ([#721](https://github.com/open-mmlab/mmclassification/pull/721))
- \[Enhance\] Set torch seed in `worker_init_fn`. ([#733](https://github.com/open-mmlab/mmclassification/pull/733))

### Bug Fixes

- \[Fix\] Fix the discontiguous output feature map of ConvNeXt. ([#743](https://github.com/open-mmlab/mmclassification/pull/743))

### Docs Update

- \[Docs\] Add brief installation steps in README for copy&paste. ([#755](https://github.com/open-mmlab/mmclassification/pull/755))
- \[Docs\] fix logo url link from mmocr to mmcls. ([#732](https://github.com/open-mmlab/mmclassification/pull/732))

## v0.21.0(04/03/2022)

### Highlights

- Support ResNetV1c and Wide-ResNet, and provide pre-trained models.
- Support dynamic input shape for ViT-based algorithms. Now our ViT, DeiT, Swin-Transformer and T2T-ViT support forwarding with any input shape.
- Reproduce training results of DeiT. And our DeiT-T and DeiT-S have higher accuracy comparing with the official weights.

### New Features

- Add ResNetV1c. ([#692](https://github.com/open-mmlab/mmclassification/pull/692))
- Support Wide-ResNet. ([#715](https://github.com/open-mmlab/mmclassification/pull/715))
- Support gem pooling ([#677](https://github.com/open-mmlab/mmclassification/pull/677))

### Improvements

- Reproduce training results of DeiT. ([#711](https://github.com/open-mmlab/mmclassification/pull/711))
- Add ConvNeXt pretrain models on ImageNet-1k. ([#707](https://github.com/open-mmlab/mmclassification/pull/707))
- Support dynamic input shape for ViT-based algorithms. ([#706](https://github.com/open-mmlab/mmclassification/pull/706))
- Add `evaluate` function for ConcatDataset. ([#650](https://github.com/open-mmlab/mmclassification/pull/650))
- Enhance vis-pipeline tool. ([#604](https://github.com/open-mmlab/mmclassification/pull/604))
- Return code 1 if scripts runs failed. ([#694](https://github.com/open-mmlab/mmclassification/pull/694))
- Use PyTorch official `one_hot` to implement `convert_to_one_hot`. ([#696](https://github.com/open-mmlab/mmclassification/pull/696))
- Add a new pre-commit-hook to automatically add a copyright. ([#710](https://github.com/open-mmlab/mmclassification/pull/710))
- Add deprecation message for deploy tools. ([#697](https://github.com/open-mmlab/mmclassification/pull/697))
- Upgrade isort pre-commit hooks. ([#687](https://github.com/open-mmlab/mmclassification/pull/687))
- Use `--gpu-id` instead of `--gpu-ids` in non-distributed multi-gpu training/testing. ([#688](https://github.com/open-mmlab/mmclassification/pull/688))
- Remove deprecation. ([#633](https://github.com/open-mmlab/mmclassification/pull/633))

### Bug Fixes

- Fix Conformer forward with irregular input size. ([#686](https://github.com/open-mmlab/mmclassification/pull/686))
- Add `dist.barrier` to fix a bug in directory checking. ([#666](https://github.com/open-mmlab/mmclassification/pull/666))

## v0.20.1(07/02/2022)

### Bug Fixes

- Fix the MMCV dependency version.

## v0.20.0(30/01/2022)

### Highlights

- Support K-fold cross-validation. The tutorial will be released later.
- Support HRNet, ConvNeXt, Twins and EfficientNet.
- Support model conversion from PyTorch to Core-ML by a tool.

### New Features

- Support K-fold cross-validation. ([#563](https://github.com/open-mmlab/mmclassification/pull/563))
- Support HRNet and add pre-trained models. ([#660](https://github.com/open-mmlab/mmclassification/pull/660))
- Support ConvNeXt and add pre-trained models. ([#670](https://github.com/open-mmlab/mmclassification/pull/670))
- Support Twins and add pre-trained models. ([#642](https://github.com/open-mmlab/mmclassification/pull/642))
- Support EfficientNet and add pre-trained models.([#649](https://github.com/open-mmlab/mmclassification/pull/649))
- Support `features_only` option in `TIMMBackbone`. ([#668](https://github.com/open-mmlab/mmclassification/pull/668))
- Add conversion script from pytorch to Core-ML model. ([#597](https://github.com/open-mmlab/mmclassification/pull/597))

### Improvements

- New-style CPU training and inference. ([#674](https://github.com/open-mmlab/mmclassification/pull/674))
- Add setup multi-processing both in train and test. ([#671](https://github.com/open-mmlab/mmclassification/pull/671))
- Rewrite channel split operation in ShufflenetV2. ([#632](https://github.com/open-mmlab/mmclassification/pull/632))
- Deprecate the support for "python setup.py test". ([#646](https://github.com/open-mmlab/mmclassification/pull/646))
- Support single-label, softmax, custom eps by asymmetric loss. ([#609](https://github.com/open-mmlab/mmclassification/pull/609))
- Save class names in best checkpoint created by evaluation hook. ([#641](https://github.com/open-mmlab/mmclassification/pull/641))

### Bug Fixes

- Fix potential unexcepted behaviors if `metric_options` is not specified in multi-label evaluation. ([#647](https://github.com/open-mmlab/mmclassification/pull/647))
- Fix API changes in  `pytorch-grad-cam>=1.3.7`. ([#656](https://github.com/open-mmlab/mmclassification/pull/656))
- Fix bug which breaks `cal_train_time` in `analyze_logs.py`. ([#662](https://github.com/open-mmlab/mmclassification/pull/662))

### Docs Update

- Update README in configs according to OpenMMLab standard. ([#672](https://github.com/open-mmlab/mmclassification/pull/672))
- Update installation guide and README. ([#624](https://github.com/open-mmlab/mmclassification/pull/624))

## v0.19.0(31/12/2021)

### Highlights

- The feature extraction function has been enhanced. See [#593](https://github.com/open-mmlab/mmclassification/pull/593) for more details.
- Provide the high-acc ResNet-50 training settings from [*ResNet strikes back*](https://arxiv.org/abs/2110.00476).
- Reproduce the training accuracy of T2T-ViT & RegNetX, and provide self-training checkpoints.
- Support DeiT & Conformer backbone and checkpoints.
- Provide a CAM visualization tool based on [pytorch-grad-cam](https://github.com/jacobgil/pytorch-grad-cam), and detailed [user guide](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#class-activation-map-visualization)!

### New Features

- Support Precise BN. ([#401](https://github.com/open-mmlab/mmclassification/pull/401))
- Add CAM visualization tool. ([#577](https://github.com/open-mmlab/mmclassification/pull/577))
- Repeated Aug and Sampler Registry. ([#588](https://github.com/open-mmlab/mmclassification/pull/588))
- Add DeiT backbone and checkpoints. ([#576](https://github.com/open-mmlab/mmclassification/pull/576))
- Support LAMB optimizer. ([#591](https://github.com/open-mmlab/mmclassification/pull/591))
- Implement the conformer backbone. ([#494](https://github.com/open-mmlab/mmclassification/pull/494))
- Add the frozen function for Swin Transformer model. ([#574](https://github.com/open-mmlab/mmclassification/pull/574))
- Support using checkpoint in Swin Transformer to save memory. ([#557](https://github.com/open-mmlab/mmclassification/pull/557))

### Improvements

- \[Reproduction\] Reproduce RegNetX training accuracy. ([#587](https://github.com/open-mmlab/mmclassification/pull/587))
- \[Reproduction\] Reproduce training results of T2T-ViT. ([#610](https://github.com/open-mmlab/mmclassification/pull/610))
- \[Enhance\] Provide high-acc training settings of ResNet. ([#572](https://github.com/open-mmlab/mmclassification/pull/572))
- \[Enhance\] Set a random seed when the user does not set a seed. ([#554](https://github.com/open-mmlab/mmclassification/pull/554))
- \[Enhance\] Added `NumClassCheckHook` and unit tests. ([#559](https://github.com/open-mmlab/mmclassification/pull/559))
- \[Enhance\] Enhance feature extraction function. ([#593](https://github.com/open-mmlab/mmclassification/pull/593))
- \[Enhance\] Improve efficiency of precision, recall, f1_score and support. ([#595](https://github.com/open-mmlab/mmclassification/pull/595))
- \[Enhance\] Improve accuracy calculation performance. ([#592](https://github.com/open-mmlab/mmclassification/pull/592))
- \[Refactor\] Refactor `analysis_log.py`. ([#529](https://github.com/open-mmlab/mmclassification/pull/529))
- \[Refactor\] Use new API of matplotlib to handle blocking input in visualization. ([#568](https://github.com/open-mmlab/mmclassification/pull/568))
- \[CI\] Cancel previous runs that are not completed. ([#583](https://github.com/open-mmlab/mmclassification/pull/583))
- \[CI\] Skip build CI if only configs or docs modification. ([#575](https://github.com/open-mmlab/mmclassification/pull/575))

### Bug Fixes

- Fix test sampler bug. ([#611](https://github.com/open-mmlab/mmclassification/pull/611))
- Try to create a symbolic link, otherwise copy. ([#580](https://github.com/open-mmlab/mmclassification/pull/580))
- Fix a bug for multiple output in swin transformer. ([#571](https://github.com/open-mmlab/mmclassification/pull/571))

### Docs Update

- Update mmcv, torch, cuda version in Dockerfile and docs. ([#594](https://github.com/open-mmlab/mmclassification/pull/594))
- Add analysis&misc docs. ([#525](https://github.com/open-mmlab/mmclassification/pull/525))
- Fix docs build dependency. ([#584](https://github.com/open-mmlab/mmclassification/pull/584))

## v0.18.0(30/11/2021)

### Highlights

- Support MLP-Mixer backbone and provide pre-trained checkpoints.
- Add a tool to visualize the learning rate curve of the training phase. Welcome to use with the [tutorial](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization)!

### New Features

- Add MLP Mixer Backbone. ([#528](https://github.com/open-mmlab/mmclassification/pull/528), [#539](https://github.com/open-mmlab/mmclassification/pull/539))
- Support positive weights in BCE. ([#516](https://github.com/open-mmlab/mmclassification/pull/516))
- Add a tool to visualize learning rate in each iterations. ([#498](https://github.com/open-mmlab/mmclassification/pull/498))

### Improvements

- Use CircleCI to do unit tests. ([#567](https://github.com/open-mmlab/mmclassification/pull/567))
- Focal loss for single label tasks. ([#548](https://github.com/open-mmlab/mmclassification/pull/548))
- Remove useless `import_modules_from_string`. ([#544](https://github.com/open-mmlab/mmclassification/pull/544))
- Rename config files according to the config name standard. ([#508](https://github.com/open-mmlab/mmclassification/pull/508))
- Use `reset_classifier` to remove head of timm backbones. ([#534](https://github.com/open-mmlab/mmclassification/pull/534))
- Support passing arguments to loss from head. ([#523](https://github.com/open-mmlab/mmclassification/pull/523))
- Refactor `Resize` transform and add `Pad` transform. ([#506](https://github.com/open-mmlab/mmclassification/pull/506))
- Update mmcv dependency version. ([#509](https://github.com/open-mmlab/mmclassification/pull/509))

### Bug Fixes

- Fix bug when using `ClassBalancedDataset`. ([#555](https://github.com/open-mmlab/mmclassification/pull/555))
- Fix a bug when using iter-based runner with 'val' workflow. ([#542](https://github.com/open-mmlab/mmclassification/pull/542))
- Fix interpolation method checking in `Resize`. ([#547](https://github.com/open-mmlab/mmclassification/pull/547))
- Fix a bug when load checkpoints in mulit-GPUs environment. ([#527](https://github.com/open-mmlab/mmclassification/pull/527))
- Fix an error on indexing scalar metrics in `analyze_result.py`. ([#518](https://github.com/open-mmlab/mmclassification/pull/518))
- Fix wrong condition judgment in `analyze_logs.py` and prevent empty curve. ([#510](https://github.com/open-mmlab/mmclassification/pull/510))

### Docs Update

- Fix vit config and model broken links. ([#564](https://github.com/open-mmlab/mmclassification/pull/564))
- Add abstract and image for every paper. ([#546](https://github.com/open-mmlab/mmclassification/pull/546))
- Add mmflow and mim in banner and readme. ([#543](https://github.com/open-mmlab/mmclassification/pull/543))
- Add schedule and runtime tutorial docs. ([#499](https://github.com/open-mmlab/mmclassification/pull/499))
- Add the top-5 acc in ResNet-CIFAR README. ([#531](https://github.com/open-mmlab/mmclassification/pull/531))
- Fix TOC of `visualization.md` and add example images. ([#513](https://github.com/open-mmlab/mmclassification/pull/513))
- Use docs link of other projects and add MMCV docs. ([#511](https://github.com/open-mmlab/mmclassification/pull/511))

## v0.17.0(29/10/2021)

### Highlights

- Support Tokens-to-Token ViT backbone and Res2Net backbone. Welcome to use!
- Support ImageNet21k dataset.
- Add a pipeline visualization tool. Try it with the [tutorials](https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#pipeline-visualization)!

### New Features

- Add Tokens-to-Token ViT backbone and converted checkpoints. ([#467](https://github.com/open-mmlab/mmclassification/pull/467))
- Add Res2Net backbone and converted weights. ([#465](https://github.com/open-mmlab/mmclassification/pull/465))
- Support ImageNet21k dataset. ([#461](https://github.com/open-mmlab/mmclassification/pull/461))
- Support seesaw loss. ([#500](https://github.com/open-mmlab/mmclassification/pull/500))
- Add a pipeline visualization tool. ([#406](https://github.com/open-mmlab/mmclassification/pull/406))
- Add a tool to find broken files. ([#482](https://github.com/open-mmlab/mmclassification/pull/482))
- Add a tool to test TorchServe. ([#468](https://github.com/open-mmlab/mmclassification/pull/468))

### Improvements

- Refator Vision Transformer. ([#395](https://github.com/open-mmlab/mmclassification/pull/395))
- Use context manager to reuse matplotlib figures. ([#432](https://github.com/open-mmlab/mmclassification/pull/432))

### Bug Fixes

- Remove `DistSamplerSeedHook` if use `IterBasedRunner`. ([#501](https://github.com/open-mmlab/mmclassification/pull/501))
- Set the priority of `EvalHook` to "LOW" to avoid a bug when using `IterBasedRunner`. ([#488](https://github.com/open-mmlab/mmclassification/pull/488))
- Fix a wrong parameter of `get_root_logger` in `apis/train.py`. ([#486](https://github.com/open-mmlab/mmclassification/pull/486))
- Fix version check in dataset builder. ([#474](https://github.com/open-mmlab/mmclassification/pull/474))

### Docs Update

- Add English Colab tutorials and update Chinese Colab tutorials. ([#483](https://github.com/open-mmlab/mmclassification/pull/483), [#497](https://github.com/open-mmlab/mmclassification/pull/497))
- Add tutuorial for config files. ([#487](https://github.com/open-mmlab/mmclassification/pull/487))
- Add model-pages in Model Zoo. ([#480](https://github.com/open-mmlab/mmclassification/pull/480))
- Add code-spell pre-commit hook and fix a large mount of typos. ([#470](https://github.com/open-mmlab/mmclassification/pull/470))

## v0.16.0(30/9/2021)

### Highlights

- We have improved compatibility with downstream repositories like MMDetection and MMSegmentation. We will add some examples about how to use our backbones in MMDetection.
- Add RepVGG backbone and checkpoints. Welcome to use it!
- Add timm backbones wrapper, now you can simply use backbones of pytorch-image-models in MMClassification!

### New Features

- Add RepVGG backbone and checkpoints. ([#414](https://github.com/open-mmlab/mmclassification/pull/414))
- Add timm backbones wrapper. ([#427](https://github.com/open-mmlab/mmclassification/pull/427))

### Improvements

- Fix TnT compatibility and verbose warning. ([#436](https://github.com/open-mmlab/mmclassification/pull/436))
- Support setting `--out-items` in `tools/test.py`.  ([#437](https://github.com/open-mmlab/mmclassification/pull/437))
- Add datetime info and saving model using torch\<1.6 format. ([#439](https://github.com/open-mmlab/mmclassification/pull/439))
- Improve downstream repositories compatibility. ([#421](https://github.com/open-mmlab/mmclassification/pull/421))
- Rename the option `--options` to `--cfg-options` in some tools. ([#425](https://github.com/open-mmlab/mmclassification/pull/425))
- Add PyTorch 1.9 and Python 3.9 build workflow, and remove some CI. ([#422](https://github.com/open-mmlab/mmclassification/pull/422))

### Bug Fixes

- Fix format error in `test.py` when metric returns `np.ndarray`. ([#441](https://github.com/open-mmlab/mmclassification/pull/441))
- Fix `publish_model` bug if no parent of `out_file`. ([#463](https://github.com/open-mmlab/mmclassification/pull/463))
- Fix num_classes bug in pytorch2onnx.py. ([#458](https://github.com/open-mmlab/mmclassification/pull/458))
- Fix missing runtime requirement `packaging`. ([#459](https://github.com/open-mmlab/mmclassification/pull/459))
- Fix saving simplified model bug in ONNX export tool. ([#438](https://github.com/open-mmlab/mmclassification/pull/438))

### Docs Update

- Update `getting_started.md` and `install.md`. And rewrite `finetune.md`. ([#466](https://github.com/open-mmlab/mmclassification/pull/466))
- Use PyTorch style docs theme. ([#457](https://github.com/open-mmlab/mmclassification/pull/457))
- Update metafile and Readme. ([#435](https://github.com/open-mmlab/mmclassification/pull/435))
- Add `CITATION.cff`. ([#428](https://github.com/open-mmlab/mmclassification/pull/428))

## v0.15.0(31/8/2021)

### Highlights

- Support `hparams` argument in `AutoAugment` and `RandAugment` to provide hyperparameters for sub-policies.
- Support custom squeeze channels in `SELayer`.
- Support classwise weight in losses.

### New Features

- Add `hparams` argument in `AutoAugment` and `RandAugment` and some other improvement. ([#398](https://github.com/open-mmlab/mmclassification/pull/398))
- Support classwise weight in losses. ([#388](https://github.com/open-mmlab/mmclassification/pull/388))
- Enhance `SELayer` to support custom squeeze channels. ([#417](https://github.com/open-mmlab/mmclassification/pull/417))

### Code Refactor

- Better result visualization. ([#419](https://github.com/open-mmlab/mmclassification/pull/419))
- Use `post_process` function to handle pred result processing. ([#390](https://github.com/open-mmlab/mmclassification/pull/390))
- Update `digit_version` function. ([#402](https://github.com/open-mmlab/mmclassification/pull/402))
- Avoid albumentations to install both opencv and opencv-headless. ([#397](https://github.com/open-mmlab/mmclassification/pull/397))
- Avoid unnecessary listdir when building ImageNet. ([#396](https://github.com/open-mmlab/mmclassification/pull/396))
- Use dynamic mmcv download link in TorchServe dockerfile. ([#387](https://github.com/open-mmlab/mmclassification/pull/387))

### Docs Improvement

- Add readme of some algorithms and update meta yml. ([#418](https://github.com/open-mmlab/mmclassification/pull/418))
- Add Copyright information. ([#413](https://github.com/open-mmlab/mmclassification/pull/413))
- Fix typo 'metirc'. ([#411](https://github.com/open-mmlab/mmclassification/pull/411))
- Update QQ group QR code. ([#393](https://github.com/open-mmlab/mmclassification/pull/393))
- Add PR template and modify issue template. ([#380](https://github.com/open-mmlab/mmclassification/pull/380))

## v0.14.0(4/8/2021)

### Highlights

- Add transformer-in-transformer backbone and pretrain checkpoints, refers to [the paper](https://arxiv.org/abs/2103.00112).
- Add Chinese colab tutorial.
- Provide dockerfile to build mmcls dev docker image.

### New Features

- Add transformer in transformer backbone and pretrain checkpoints. ([#339](https://github.com/open-mmlab/mmclassification/pull/339))
- Support mim, welcome to use mim to manage your mmcls project. ([#376](https://github.com/open-mmlab/mmclassification/pull/376))
- Add Dockerfile. ([#365](https://github.com/open-mmlab/mmclassification/pull/365))
- Add ResNeSt configs. ([#332](https://github.com/open-mmlab/mmclassification/pull/332))

### Improvements

- Use the `presistent_works` option if available, to accelerate training. ([#349](https://github.com/open-mmlab/mmclassification/pull/349))
- Add Chinese ipynb tutorial. ([#306](https://github.com/open-mmlab/mmclassification/pull/306))
- Refactor unit tests. ([#321](https://github.com/open-mmlab/mmclassification/pull/321))
- Support to test mmdet inference with mmcls backbone. ([#343](https://github.com/open-mmlab/mmclassification/pull/343))
- Use zero as default value of `thrs` in metrics. ([#341](https://github.com/open-mmlab/mmclassification/pull/341))

### Bug Fixes

- Fix ImageNet dataset annotation file parse bug. ([#370](https://github.com/open-mmlab/mmclassification/pull/370))
- Fix docstring typo and init bug in ShuffleNetV1. ([#374](https://github.com/open-mmlab/mmclassification/pull/374))
- Use local ATTENTION registry to avoid conflict with other repositories. ([#376](https://github.com/open-mmlab/mmclassification/pull/375))
- Fix swin transformer config bug. ([#355](https://github.com/open-mmlab/mmclassification/pull/355))
- Fix `patch_cfg` argument bug in SwinTransformer. ([#368](https://github.com/open-mmlab/mmclassification/pull/368))
- Fix duplicate `init_weights` call in ViT init function. ([#373](https://github.com/open-mmlab/mmclassification/pull/373))
- Fix broken `_base_` link in a resnet config. ([#361](https://github.com/open-mmlab/mmclassification/pull/361))
- Fix vgg-19 model link missing. ([#363](https://github.com/open-mmlab/mmclassification/pull/363))

## v0.13.0(3/7/2021)

- Support Swin-Transformer backbone and add training configs for Swin-Transformer on ImageNet.

### New Features

- Support Swin-Transformer backbone and add training configs for Swin-Transformer on ImageNet. (#271)
- Add pretained model of RegNetX. (#269)
- Support adding custom hooks in config file. (#305)
- Improve and add Chinese translation of `CONTRIBUTING.md` and all tools tutorials. (#320)
- Dump config before training. (#282)
- Add torchscript and torchserve deployment tools. (#279, #284)

### Improvements

- Improve test tools and add some new tools. (#322)
- Correct MobilenetV3 backbone structure and add pretained models. (#291)
- Refactor `PatchEmbed` and `HybridEmbed` as independent components. (#330)
- Refactor mixup and cutmix as `Augments` to support more functions. (#278)
- Refactor weights initialization method. (#270, #318, #319)
- Refactor `LabelSmoothLoss` to support multiple calculation formulas. (#285)

### Bug Fixes

- Fix bug for CPU training. (#286)
- Fix missing test data when `num_imgs` can not be evenly divided by `num_gpus`. (#299)
- Fix build compatible with pytorch v1.3-1.5. (#301)
- Fix `magnitude_std` bug in `RandAugment`. (#309)
- Fix bug when `samples_per_gpu` is 1. (#311)

## v0.12.0(3/6/2021)

- Finish adding Chinese tutorials and build Chinese documentation on readthedocs.
- Update ResNeXt checkpoints and ResNet checkpoints on CIFAR.

### New Features

- Improve and add Chinese translation of `data_pipeline.md` and `new_modules.md`. (#265)
- Build Chinese translation on readthedocs. (#267)
- Add an argument efficientnet_style to `RandomResizedCrop` and `CenterCrop`. (#268)

### Improvements

- Only allow directory operation when rank==0 when testing. (#258)
- Fix typo in `base_head`. (#274)
- Update ResNeXt checkpoints. (#283)

### Bug Fixes

- Add attribute `data.test` in MNIST configs. (#264)
- Download CIFAR/MNIST dataset only on rank 0. (#273)
- Fix MMCV version compatibility. (#276)
- Fix CIFAR color channels bug and update checkpoints in model zoo. (#280)

## v0.11.1(21/5/2021)

- Refine `new_dataset.md` and add Chinese translation of `finture.md`, `new_dataset.md`.

### New Features

- Add `dim` argument for `GlobalAveragePooling`. (#236)
- Add random noise to `RandAugment` magnitude. (#240)
- Refine `new_dataset.md` and add Chinese translation of `finture.md`, `new_dataset.md`. (#243)

### Improvements

- Refactor arguments passing for Heads. (#239)
- Allow more flexible `magnitude_range` in `RandAugment`. (#249)
- Inherits MMCV registry so that in the future OpenMMLab repos like MMDet and MMSeg could directly use the backbones supported in MMCls. (#252)

### Bug Fixes

- Fix typo in `analyze_results.py`. (#237)
- Fix typo in unittests. (#238)
- Check if specified tmpdir exists when testing to avoid deleting existing data. (#242 & #258)
- Add missing config files in `MANIFEST.in`. (#250 & #255)
- Use temporary directory under shared directory to collect results to avoid unavailability of temporary directory for multi-node testing. (#251)

## v0.11.0(1/5/2021)

- Support cutmix trick.
- Support random augmentation.
- Add `tools/deployment/test.py` as a ONNX runtime test tool.
- Support ViT backbone and add training configs for ViT on ImageNet.
- Add Chinese `README.md` and some Chinese tutorials.

### New Features

- Support cutmix trick. (#198)
- Add `simplify` option in `pytorch2onnx.py`. (#200)
- Support random augmentation. (#201)
- Add config and checkpoint for training ResNet on CIFAR-100. (#208)
- Add `tools/deployment/test.py` as a ONNX runtime test tool. (#212)
- Support ViT backbone and add training configs for ViT on ImageNet. (#214)
- Add finetuning configs for ViT on ImageNet. (#217)
- Add `device` option to support training on CPU. (#219)
- Add Chinese `README.md` and some Chinese tutorials. (#221)
- Add `metafile.yml` in configs to support interaction with paper with code(PWC) and MMCLI. (#225)
- Upload configs and converted checkpoints for ViT fintuning on ImageNet. (#230)

### Improvements

- Fix `LabelSmoothLoss` so that label smoothing and mixup could be enabled at the same time. (#203)
- Add `cal_acc` option in `ClsHead`. (#206)
- Check `CLASSES` in checkpoint to avoid unexpected key error. (#207)
- Check mmcv version when importing mmcls to ensure compatibility. (#209)
- Update `CONTRIBUTING.md` to align with that in MMCV. (#210)
- Change tags to html comments in configs README.md. (#226)
- Clean codes in ViT backbone. (#227)
- Reformat `pytorch2onnx.md` tutorial. (#229)
- Update `setup.py` to support MMCLI. (#232)

### Bug Fixes

- Fix missing `cutmix_prob` in ViT configs. (#220)
- Fix backend for resize in ResNeXt configs. (#222)

## v0.10.0(1/4/2021)

- Support AutoAugmentation
- Add tutorials for installation and usage.

### New Features

- Add `Rotate` pipeline for data augmentation. (#167)
- Add `Invert` pipeline for data augmentation. (#168)
- Add `Color` pipeline for data augmentation. (#171)
- Add `Solarize` and `Posterize` pipeline for data augmentation. (#172)
- Support fp16 training. (#178)
- Add tutorials for installation and basic usage of MMClassification.(#176)
- Support `AutoAugmentation`, `AutoContrast`, `Equalize`, `Contrast`, `Brightness` and `Sharpness` pipelines for data augmentation. (#179)

### Improvements

- Support dynamic shape export to onnx. (#175)
- Release training configs and update model zoo for fp16 (#184)
- Use MMCV's EvalHook in MMClassification (#182)

### Bug Fixes

- Fix wrong naming in vgg config (#181)

## v0.9.0(1/3/2021)

- Implement mixup trick.
- Add a new tool to create TensorRT engine from ONNX, run inference and verify outputs in Python.

### New Features

- Implement mixup and provide configs of training ResNet50 using mixup. (#160)
- Add `Shear` pipeline for data augmentation. (#163)
- Add `Translate` pipeline for data augmentation. (#165)
- Add `tools/onnx2tensorrt.py` as a tool to create TensorRT engine from ONNX, run inference and verify outputs in Python. (#153)

### Improvements

- Add `--eval-options` in `tools/test.py` to support eval options override, matching the behavior of other open-mmlab projects. (#158)
- Support showing and saving painted results in `mmcls.apis.test` and `tools/test.py`, matching the behavior of other open-mmlab projects. (#162)

### Bug Fixes

- Fix configs for VGG, replace checkpoints converted from other repos with the ones trained by ourselves and upload the missing logs in the model zoo. (#161)

## v0.8.0(31/1/2021)

- Support multi-label task.
- Support more flexible metrics settings.
- Fix bugs.

### New Features

- Add evaluation metrics: mAP, CP, CR, CF1, OP, OR, OF1 for multi-label task. (#123)
- Add BCE loss for multi-label task. (#130)
- Add focal loss for multi-label task. (#131)
- Support PASCAL VOC 2007 dataset for multi-label task. (#134)
- Add asymmetric loss for multi-label task. (#132)
- Add analyze_results.py to select images for success/fail demonstration. (#142)
- Support new metric that calculates the total number of occurrences of each label. (#143)
- Support class-wise evaluation results. (#143)
- Add thresholds in eval_metrics. (#146)
- Add heads and a baseline config for multilabel task. (#145)

### Improvements

- Remove the models with 0 checkpoint and ignore the repeated papers when counting papers to gain more accurate model statistics. (#135)
- Add tags in README.md. (#137)
- Fix optional issues in docstring. (#138)
- Update stat.py to classify papers. (#139)
- Fix mismatched columns in README.md. (#150)
- Fix test.py to support more evaluation metrics. (#155)

### Bug Fixes

- Fix bug in VGG weight_init. (#140)
- Fix bug in 2 ResNet configs in which outdated heads were used. (#147)
- Fix bug of misordered height and width in `RandomCrop` and `RandomResizedCrop`. (#151)
- Fix missing `meta_keys` in `Collect`. (#149 & #152)

## v0.7.0(31/12/2020)

- Add more evaluation metrics.
- Fix bugs.

### New Features

- Remove installation of MMCV from requirements. (#90)
- Add 3 evaluation metrics: precision, recall and F-1 score. (#93)
- Allow config override during testing and inference with `--options`. (#91 & #96)

### Improvements

- Use `build_runner` to make runners more flexible. (#54)
- Support to get category ids in `BaseDataset`. (#72)
- Allow `CLASSES` override during `BaseDateset` initialization. (#85)
- Allow input image as ndarray during inference. (#87)
- Optimize MNIST config. (#98)
- Add config links in model zoo documentation. (#99)
- Use functions from MMCV to collect environment. (#103)
- Refactor config files so that they are now categorized by methods. (#116)
- Add README in config directory. (#117)
- Add model statistics. (#119)
- Refactor documentation in consistency with other MM repositories. (#126)

### Bug Fixes

- Add missing `CLASSES` argument to dataset wrappers. (#66)
- Fix slurm evaluation error during training. (#69)
- Resolve error caused by shape in `Accuracy`. (#104)
- Fix bug caused by extremely insufficient data in distributed sampler.(#108)
- Fix bug in `gpu_ids` in distributed training. (#107)
- Fix bug caused by extremely insufficient data in collect results during testing (#114)

## v0.6.0(11/10/2020)

- Support new method: ResNeSt and VGG.
- Support new dataset: CIFAR10.
- Provide new tools to do model inference, model conversion from pytorch to onnx.

### New Features

- Add model inference. (#16)
- Add pytorch2onnx. (#20)
- Add PIL backend for transform `Resize`. (#21)
- Add ResNeSt. (#25)
- Add VGG and its pretained models. (#27)
- Add CIFAR10 configs and models. (#38)
- Add albumentations transforms. (#45)
- Visualize results on image demo. (#58)

### Improvements

- Replace urlretrieve with urlopen in dataset.utils. (#13)
- Resize image according to its short edge. (#22)
- Update ShuffleNet config. (#31)
- Update pre-trained models for shufflenet_v2, shufflenet_v1, se-resnet50, se-resnet101. (#33)

### Bug Fixes

- Fix init_weights in `shufflenet_v2.py`. (#29)
- Fix the parameter `size` in test_pipeline. (#30)
- Fix the parameter in cosine lr schedule. (#32)
- Fix the convert tools for mobilenet_v2. (#34)
- Fix crash in CenterCrop transform when image is greyscale (#40)
- Fix outdated configs. (#53)