"src/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "c7b8abc1e252f78975d9685f704122caee694999"
dataset.py 17.2 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import time
import os
import logging
from operator import itemgetter

import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset

import seq2seq.data.config as config
from seq2seq.data.sampler import BucketingSampler
from seq2seq.data.sampler import DistributedSampler
from seq2seq.data.sampler import ShardingSampler
from seq2seq.data.sampler import StaticDistributedSampler


def build_collate_fn(batch_first=False, parallel=True, sort=False):
    """
    Factory for collate_fn functions.

    :param batch_first: if True returns batches in (batch, seq) format, if
        False returns in (seq, batch) format
    :param parallel: if True builds batches from parallel corpus (src, tgt)
    :param sort: if True sorts by src sequence length within each batch
    """
    def collate_seq(seq):
        """
        Builds batches for training or inference.
        Batches are returned as pytorch tensors, with padding.

        :param seq: list of sequences
        """
        lengths = [len(s) for s in seq]
        batch_length = max(lengths)

        shape = (batch_length, len(seq))
        seq_tensor = torch.full(shape, config.PAD, dtype=torch.int64)

        for i, s in enumerate(seq):
            end_seq = lengths[i]
            seq_tensor[:end_seq, i].copy_(s[:end_seq])

        if batch_first:
            seq_tensor = seq_tensor.t()

        return (seq_tensor, lengths)

    def parallel_collate(seqs):
        """
        Builds batches from parallel dataset (src, tgt), optionally sorts batch
        by src sequence length.

        :param seqs: tuple of (src, tgt) sequences
        """
        src_seqs, tgt_seqs = zip(*seqs)
        if sort:
            indices, src_seqs = zip(*sorted(enumerate(src_seqs),
                                            key=lambda item: len(item[1]),
                                            reverse=True))
            tgt_seqs = [tgt_seqs[idx] for idx in indices]

        return tuple([collate_seq(s) for s in [src_seqs, tgt_seqs]])

    def single_collate(seqs):
        """
        Builds batches from text dataset, optionally sorts batch by src
        sequence length.

        :param src_seqs: source sequences
        """
        src_seqs, indices = zip(*seqs)
        if sort:
            idx, src_seqs = zip(*sorted(enumerate(src_seqs),
                                        key=lambda item: len(item[1]),
                                        reverse=True))
            indices = [indices[i] for i in idx]

        return collate_seq(src_seqs), tuple(indices)

    if parallel:
        return parallel_collate
    else:
        return single_collate


class TextDataset(Dataset):
    def __init__(self, src_fname, tokenizer, min_len=None, max_len=None,
                 sort=False, max_size=None):
        """
        Constructor for the TextDataset. Builds monolingual dataset.

        :param src_fname: path to the file with data
        :param tokenizer: tokenizer
        :param min_len: minimum sequence length
        :param max_len: maximum sequence length
        :param sort: sorts dataset by sequence length
        :param max_size: loads at most 'max_size' samples from the input file,
            if None loads the entire dataset
        """

        self.min_len = min_len
        self.max_len = max_len
        self.parallel = False
        self.sorted = False

        self.src = self.process_data(src_fname, tokenizer, max_size)

        if min_len is not None and max_len is not None:
            self.filter_data(min_len, max_len)

        lengths = [len(s) for s in self.src]
        self.lengths = torch.tensor(lengths)

        if sort:
            self.sort_by_length()

    def sort_by_length(self):
        """
        Sorts dataset by the sequence length.
        """
        self.lengths, indices = self.lengths.sort(descending=True)

        self.src = [self.src[idx] for idx in indices]
        self.indices = indices.tolist()
        self.sorted = True

    def unsort(self, array):
        """
        "Unsorts" given array (restores original order of elements before
        dataset was sorted by sequence length).

        :param array: array to be "unsorted"
        """
        if self.sorted:
            inverse = sorted(enumerate(self.indices), key=itemgetter(1))
            array = [array[i[0]] for i in inverse]
        return array

    def filter_data(self, min_len, max_len):
        """
        Preserves only samples which satisfy the following inequality:
            min_len <= sample sequence length <= max_len

        :param min_len: minimum sequence length
        :param max_len: maximum sequence length
        """
        logging.info(f'Filtering data, min len: {min_len}, max len: {max_len}')

        initial_len = len(self.src)
        filtered_src = []
        for src in self.src:
            if min_len <= len(src) <= max_len:
                filtered_src.append(src)

        self.src = filtered_src
        filtered_len = len(self.src)
        logging.info(f'Pairs before: {initial_len}, after: {filtered_len}')

    def process_data(self, fname, tokenizer, max_size):
        """
        Loads data from the input file.

        :param fname: input file name
        :param tokenizer: tokenizer
        :param max_size: loads at most 'max_size' samples from the input file,
            if None loads the entire dataset
        """
        logging.info(f'Processing data from {fname}')
        data = []
        with open(fname) as dfile:
            for idx, line in enumerate(dfile):
                if max_size and idx == max_size:
                    break
                entry = tokenizer.segment(line)
                entry = torch.tensor(entry)
                data.append(entry)
        return data

    def __len__(self):
        return len(self.src)

    def __getitem__(self, idx):
        return self.src[idx], self.indices[idx]

    def get_loader(self, batch_size=1, seeds=None, shuffle=False,
                   num_workers=0, batch_first=False, pad=False,
                   batching=None, batching_opt={}):

        collate_fn = build_collate_fn(batch_first, parallel=self.parallel,
                                      sort=True)

        if shuffle:
            if batching == 'random':
                sampler = DistributedSampler(self, batch_size, seeds)
            elif batching == 'sharding':
                sampler = ShardingSampler(self, batch_size, seeds,
                                          batching_opt['shard_size'])
            elif batching == 'bucketing':
                sampler = BucketingSampler(self, batch_size, seeds,
                                           batching_opt['num_buckets'])
            else:
                raise NotImplementedError
        else:
            sampler = StaticDistributedSampler(self, batch_size, pad)

        return DataLoader(self,
                          batch_size=batch_size,
                          collate_fn=collate_fn,
                          sampler=sampler,
                          num_workers=num_workers,
                          pin_memory=True,
                          drop_last=False)

        #return DataLoader(self,
        #                  batch_size=batch_size,
        #                  collate_fn=collate_fn,
        #                  sampler=sampler,
        #                  num_workers=num_workers,
        #                  pin_memory=False,
        #                  drop_last=False)

class ParallelDataset(TextDataset):
    def __init__(self, src_fname, tgt_fname, tokenizer,
                 min_len, max_len, sort=False, max_size=None):
        """
        Constructor for the ParallelDataset.
        Tokenization is done when the data is loaded from the disk.

        :param src_fname: path to the file with src language data
        :param tgt_fname: path to the file with tgt language data
        :param tokenizer: tokenizer
        :param min_len: minimum sequence length
        :param max_len: maximum sequence length
        :param sort: sorts dataset by sequence length
        :param max_size: loads at most 'max_size' samples from the input file,
            if None loads the entire dataset
        """

        self.min_len = min_len
        self.max_len = max_len
        self.parallel = True
        self.sorted = False

        self.src = self.process_data(src_fname, tokenizer, max_size)
        self.tgt = self.process_data(tgt_fname, tokenizer, max_size)
        assert len(self.src) == len(self.tgt)

        self.filter_data(min_len, max_len)
        assert len(self.src) == len(self.tgt)

        src_lengths = [len(s) for s in self.src]
        tgt_lengths = [len(t) for t in self.tgt]
        self.src_lengths = torch.tensor(src_lengths)
        self.tgt_lengths = torch.tensor(tgt_lengths)
        self.lengths = self.src_lengths + self.tgt_lengths

        if sort:
            self.sort_by_length()

    def sort_by_length(self):
        """
        Sorts dataset by the sequence length.
        """
        self.lengths, indices = self.lengths.sort(descending=True)

        self.src = [self.src[idx] for idx in indices]
        self.tgt = [self.tgt[idx] for idx in indices]
        self.src_lengths = [self.src_lengths[idx] for idx in indices]
        self.tgt_lengths = [self.tgt_lengths[idx] for idx in indices]
        self.indices = indices.tolist()
        self.sorted = True

    def filter_data(self, min_len, max_len):
        """
        Preserves only samples which satisfy the following inequality:
            min_len <= src sample sequence length <= max_len AND
            min_len <= tgt sample sequence length <= max_len

        :param min_len: minimum sequence length
        :param max_len: maximum sequence length
        """
        logging.info(f'Filtering data, min len: {min_len}, max len: {max_len}')

        initial_len = len(self.src)
        filtered_src = []
        filtered_tgt = []
        for src, tgt in zip(self.src, self.tgt):
            if min_len <= len(src) <= max_len and \
                    min_len <= len(tgt) <= max_len:
                filtered_src.append(src)
                filtered_tgt.append(tgt)

        self.src = filtered_src
        self.tgt = filtered_tgt
        filtered_len = len(self.src)
        logging.info(f'Pairs before: {initial_len}, after: {filtered_len}')

    def __getitem__(self, idx):
        return self.src[idx], self.tgt[idx]


class LazyParallelDataset(TextDataset):
    def __init__(self, src_fname, tgt_fname, tokenizer,
                 min_len, max_len, sort=False, max_size=None):
        """
        Constructor for the LazyParallelDataset.
        Tokenization is done on the fly.

        :param src_fname: path to the file with src language data
        :param tgt_fname: path to the file with tgt language data
        :param tokenizer: tokenizer
        :param min_len: minimum sequence length
        :param max_len: maximum sequence length
        :param sort: sorts dataset by sequence length
        :param max_size: loads at most 'max_size' samples from the input file,
            if None loads the entire dataset
        """
        self.min_len = min_len
        self.max_len = max_len
        self.parallel = True
        self.sorted = False
        self.tokenizer = tokenizer

        self.raw_src = self.process_raw_data(src_fname, max_size)
        self.raw_tgt = self.process_raw_data(tgt_fname, max_size)
        assert len(self.raw_src) == len(self.raw_tgt)

        logging.info(f'Filtering data, min len: {min_len}, max len: {max_len}')
        # Subtracting 2 because EOS and BOS are added later during tokenization
        self.filter_raw_data(min_len - 2, max_len - 2)
        assert len(self.raw_src) == len(self.raw_tgt)

        # Adding 2 because EOS and BOS are added later during tokenization
        src_lengths = [i + 2 for i in self.src_len]
        tgt_lengths = [i + 2 for i in self.tgt_len]
        self.src_lengths = torch.tensor(src_lengths)
        self.tgt_lengths = torch.tensor(tgt_lengths)
        self.lengths = self.src_lengths + self.tgt_lengths

    def process_raw_data(self, fname, max_size):
        """
        Loads data from the input file.

        :param fname: input file name
        :param max_size: loads at most 'max_size' samples from the input file,
            if None loads the entire dataset
        """
        logging.info(f'Processing data from {fname}')
        with open(fname) as dfile:
            data = dfile.readlines()
        if max_size:
            data = data[:max_size]
        return data

    def filter_raw_data(self, min_len, max_len):
        """
        Preserves only samples which satisfy the following inequality:
            min_len <= src sample sequence length <= max_len AND
            min_len <= tgt sample sequence length <= max_len

        :param min_len: minimum sequence length
        :param max_len: maximum sequence length
        """
        initial_len = len(self.raw_src)
        filtered_src = []
        filtered_tgt = []
        filtered_src_len = []
        filtered_tgt_len = []
        for src, tgt in zip(self.raw_src, self.raw_tgt):
            src_len = src.count(' ') + 1
            tgt_len = tgt.count(' ') + 1
            if min_len <= src_len <= max_len and \
                    min_len <= tgt_len <= max_len:
                filtered_src.append(src)
                filtered_tgt.append(tgt)
                filtered_src_len.append(src_len)
                filtered_tgt_len.append(tgt_len)

        self.raw_src = filtered_src
        self.raw_tgt = filtered_tgt
        self.src_len = filtered_src_len
        self.tgt_len = filtered_tgt_len
        filtered_len = len(self.raw_src)
        logging.info(f'Pairs before: {initial_len}, after: {filtered_len}')

    def __getitem__(self, idx):
        src = torch.tensor(self.tokenizer.segment(self.raw_src[idx]))
        tgt = torch.tensor(self.tokenizer.segment(self.raw_tgt[idx]))
        return src, tgt

    def __len__(self):
        return len(self.raw_src)


class PreprocessedDataset(TextDataset):
    def __init__(self, min_len, max_len, vocab_size):
        self.min_len = min_len
        self.max_len = max_len
        self.vocab_size = vocab_size
        self.parallel = True

    def get_data_dtype(self, vocab_size):
        if vocab_size <= np.iinfo(np.int16).max:
            dtype = np.int16
        elif vocab_size <= np.iinfo(np.int32).max:
            dtype = np.int32
        elif vocab_size <= np.iinfo(np.int64).max:
            dtype = np.int64
        else:
            raise ValueError('Vocabulary size is too large')
        return dtype

    def write_data(self, fname, src, tgt):
        src, src_lengths = src
        tgt, tgt_lengths = tgt

        assert len(src) == len(tgt) == len(src_lengths) == len(tgt_lengths)
        length = len(src)

        dtype = self.get_data_dtype(self.vocab_size)
        data = torch.cat((src, tgt), dim=1).numpy()

        offset = 0
        with open(fname, 'wb') as f:
            offset += f.write((np.array(length, dtype=np.int64)))
            offset += f.write((np.array(self.vocab_size, dtype=np.int64)))
            offset += f.write((np.array(self.min_len, dtype=np.int64)))
            offset += f.write((np.array(self.max_len, dtype=np.int64)))
            offset += f.write((np.array(src_lengths, dtype=np.int64)))
            offset += f.write((np.array(tgt_lengths, dtype=np.int64)))

            offset += np.iinfo(np.int64).dtype.itemsize
            f.write((np.array(offset, dtype=np.int64)))
            f.write((np.array(data, dtype=dtype)))

    def read_data(self, fname, vocab_size):
        self.fname = fname

        with open(fname, 'rb') as f:
            logging.info(f'Reading preprocessed data file from {fname}')
            length = int(np.fromfile(f, np.int64, 1))
            file_vocab_size = int(np.fromfile(f, np.int64, 1))
            file_min_len = int(np.fromfile(f, np.int64, 1))
            file_max_len = int(np.fromfile(f, np.int64, 1))
            src_lengths = np.fromfile(f, np.int64, length)
            tgt_lengths = np.fromfile(f, np.int64, length)
            self.offset = int(np.fromfile(f, np.int64, 1))

        assert file_max_len == self.max_len
        assert file_min_len == self.min_len
        assert file_vocab_size == self.vocab_size

        logging.info(
            f'Preprocessed data: length: {length} '
            f'min length: {self.min_len} '
            f'max length: {self.max_len} '
            )

        self.length = length
        self.src_lengths = torch.tensor(src_lengths)
        self.tgt_lengths = torch.tensor(tgt_lengths)
        self.lengths = self.src_lengths + self.tgt_lengths
        self.dtype = self.get_data_dtype(vocab_size)
        itemsize = np.iinfo(self.dtype).dtype.itemsize
        self.item_stride = itemsize * self.max_len * 2

    def prepare(self):
        logging.info(f'Opening preprocessed data {self.fname} for reading')
        self.file = open(self.fname, 'rb')

    def finalize(self):
        logging.info(f'Closing preprocessed data file')
        self.file.close()

    def __getitem__(self, idx):
        offset = self.offset + self.item_stride * idx
        self.file.seek(offset, os.SEEK_SET)
        data = np.fromfile(self.file, self.dtype, self.max_len * 2)
        data = data.astype(np.int64)
        src_len = self.src_lengths[idx]
        tgt_len = self.tgt_lengths[idx]
        src = torch.tensor(data[0: src_len])
        tgt = torch.tensor(data[self.max_len: self.max_len + tgt_len])
        return src, tgt

    def __len__(self):
        return self.length