"vscode:/vscode.git/clone" did not exist on "02f48b9bfc9d7a1f04cce20b2df4c4b478971e6b"
train_fp32.py 18.5 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import os
from argparse import ArgumentParser
from utils import DefaultBoxes, Encoder, COCODetection
from base_model import Loss
from utils import SSDTransformer
from ssd300 import SSD300
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
import time
import random
import numpy as np
from mlperf_compliance import mlperf_log
from mlperf_logger import ssd_print, broadcast_seeds
import logging

logging.getLogger().setLevel(logging.INFO)
logFormat="%(asctime)s\t[%(thread)d]\t%(levelname)s\t[%(filename)s:%(lineno)d(%(funcName)s)]: %(message)s"
logging.basicConfig(level=logging.DEBUG, # 日志级别
                    format=logFormat, # 日志格式
                    filename="", # 日志文件路径
                    filemode="a") # "w","a"


def parse_args():
    parser = ArgumentParser(description="Train Single Shot MultiBox Detector"
                                        " on COCO")
    parser.add_argument('--print-interval', type=int, default=10)
    parser.add_argument('--data', '-d', type=str, default='/coco',
                        help='path to test and training data files')
    parser.add_argument('--epochs', '-e', type=int, default=800,
                        help='number of epochs for training')
    parser.add_argument('--batch-size', '-b', type=int, default=32,
                        help='number of examples for each iteration')
    parser.add_argument('--no-cuda', action='store_true',
                        help='use available GPUs')
    parser.add_argument('--seed', '-s', type=int, default=random.SystemRandom().randint(0, 2**32 - 1),
                        help='manually set random seed for torch')
    parser.add_argument('--threshold', '-t', type=float, default=0.23,
                        help='stop training early at threshold')
    parser.add_argument('--iteration', type=int, default=0,
                        help='iteration to start from')
    parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
    parser.add_argument('--snapshot_path', type=str, default=None,
                        help='path to model')
    parser.add_argument('--checkpoint', type=str, default=None,
                        help='path to model checkpoint file')
    parser.add_argument('--no-save', action='store_true',
                        help='save model checkpoints')
    parser.add_argument('--evaluation', nargs='*', type=int,
                        default=[30, 40, 42, 45, 48, 50, 55, 60, 65, 70, 75, 80, 90, 100,105, 110,115, 120, 200, 300, 400, 410, 420 ,430, 440, 450, 460, 470, 480, 490, 500, 600, 700, 800, 900, 999],
                        #default=[1, 2, 3, 40, 50, 55, 60, 65, 70, 75, 80, 90, 100, 200, 300, 400, 410, 420 ,430, 440, 450, 460, 470, 480, 490, 500, 600, 700, 800, 900, 999],
                        help='epochs at which to evaluate')
    parser.add_argument('--lr-decay-schedule', nargs='*', type=int,
                        default=[40, 50],
                        #default=[35, 45],
                        help='epochs at which to decay the learning rate')
    parser.add_argument('--warmup', type=float, default=None,
                        help='how long the learning rate will be warmed up in fraction of epochs')
    parser.add_argument('--warmup-factor', type=int, default=0,
                        help='mlperf rule parameter for controlling warmup curve')
    parser.add_argument('--lr', type=float, default=2.5e-3,
                        help='base learning rate')
    # Distributed stuff
    parser.add_argument('--local_rank', default=0, type=int,
                        help='Used for multi-process training. Can either be manually set ' +
                        'or automatically set by using \'python -m multiproc\'.')
    return parser.parse_args()


def show_memusage(device=0):
    import gpustat
    gpu_stats = gpustat.GPUStatCollection.new_query()
    item = gpu_stats.jsonify()["gpus"][device]
    print("{}/{}".format(item["memory.used"], item["memory.total"]))


def dboxes300_coco():
    figsize = 300
    feat_size = [38, 19, 10, 5, 3, 1]
    ssd_print(key=mlperf_log.FEATURE_SIZES, value=feat_size)

    steps = [8, 16, 32, 64, 100, 300]
    ssd_print(key=mlperf_log.STEPS, value=steps)

    # use the scales here: https://github.com/amdegroot/ssd.pytorch/blob/master/data/config.py
    scales = [21, 45, 99, 153, 207, 261, 315]
    ssd_print(key=mlperf_log.SCALES, value=scales)

    aspect_ratios = [[2], [2, 3], [2, 3], [2, 3], [2], [2]]
    ssd_print(key=mlperf_log.ASPECT_RATIOS, value=aspect_ratios)

    dboxes = DefaultBoxes(figsize, feat_size, steps, scales, aspect_ratios)
    ssd_print(key=mlperf_log.NUM_DEFAULTS,
                         value=len(dboxes.default_boxes))
    return dboxes


def coco_eval(model, coco, cocoGt, encoder, inv_map, threshold,
              epoch, iteration, use_cuda=True):
    from pycocotools.cocoeval import COCOeval
    print("")
    model.eval()
    if use_cuda:
        model.cuda()
    ret = []

    overlap_threshold = 0.50
    nms_max_detections = 200
    ssd_print(key=mlperf_log.NMS_THRESHOLD,
                         value=overlap_threshold, sync=False)
    ssd_print(key=mlperf_log.NMS_MAX_DETECTIONS,
                         value=nms_max_detections, sync=False)

    ssd_print(key=mlperf_log.EVAL_START, value=epoch, sync=False)

    start = time.time()
    for idx, image_id in enumerate(coco.img_keys):
        img, (htot, wtot), _, _ = coco[idx]

        with torch.no_grad():
            print("Parsing image: {}/{}".format(idx+1, len(coco)), end="\r")
            inp = img.unsqueeze(0)
            if use_cuda:
                inp = inp.cuda()
            ploc, plabel = model(inp)

            try:
                result = encoder.decode_batch(ploc, plabel,
                                              overlap_threshold,
                                              nms_max_detections)[0]

            except:
                #raise
                print("")
                print("No object detected in idx: {}".format(idx))
                continue

            loc, label, prob = [r.cpu().numpy() for r in result]
            for loc_, label_, prob_ in zip(loc, label, prob):
                ret.append([image_id, loc_[0]*wtot, \
                                      loc_[1]*htot,
                                      (loc_[2] - loc_[0])*wtot,
                                      (loc_[3] - loc_[1])*htot,
                                      prob_,
                                      inv_map[label_]])
    print("")
    print("Predicting Ended, total time: {:.2f} s".format(time.time()-start))

    cocoDt = cocoGt.loadRes(np.array(ret))

    E = COCOeval(cocoGt, cocoDt, iouType='bbox')
    E.evaluate()
    E.accumulate()
    E.summarize()
    print("Current AP: {:.5f} AP goal: {:.5f}".format(E.stats[0], threshold))

    # put your model back into training mode
    model.train()

    current_accuracy = E.stats[0]
    ssd_print(key=mlperf_log.EVAL_SIZE, value=idx + 1, sync=False)
    ssd_print(key=mlperf_log.EVAL_ACCURACY,
                         value={"epoch": epoch,
                                "value": current_accuracy},
              sync=False)
    ssd_print(key=mlperf_log.EVAL_ITERATION_ACCURACY,
                         value={"iteration": iteration,
                                "value": current_accuracy},
              sync=False)
    ssd_print(key=mlperf_log.EVAL_TARGET, value=threshold, sync=False)
    ssd_print(key=mlperf_log.EVAL_STOP, value=epoch, sync=False)
    return current_accuracy>= threshold #Average Precision  (AP) @[ IoU=050:0.95 | area=   all | maxDets=100 ]

def lr_warmup(optim, wb, iter_num, base_lr, args):
	if iter_num < wb:
		# mlperf warmup rule
		warmup_step = base_lr / (wb * (2 ** args.warmup_factor))
		new_lr = base_lr - (wb - iter_num) * warmup_step
		#new_lr = base_lr - (wb - iter_num) * warmup_step
		print("warm new_lr = {}".format(new_lr))
		for param_group in optim.param_groups:
			param_group['lr'] = new_lr

def load_checkpoint(model, checkpoint):
    print("loading model checkpoint", checkpoint)
    od = torch.load(checkpoint)

    # remove proceeding 'module' from checkpoint
    saved_model = od["model"]
    for k in list(saved_model.keys()):
        if k.startswith('module.'):
            saved_model[k[7:]] = saved_model.pop(k)
    model.load_state_dict(saved_model)

def train300_mlperf_coco(args):
    global torch
    from coco import COCO
    # Check that GPUs are actually available
    use_cuda = not args.no_cuda and torch.cuda.is_available()
    args.distributed = False
    if use_cuda:
        try:
            from apex.parallel import DistributedDataParallel as DDP
            #from torch.nn.parallel import DistributedDataParallel as DDP
            if 'WORLD_SIZE' in os.environ:
                args.distributed = int(os.environ['WORLD_SIZE']) > 1
        except:
            raise ImportError("Please install APEX from https://github.com/nvidia/apex")

    if args.distributed:
        # necessary pytorch imports
        import torch.utils.data.distributed
        import torch.distributed as dist
 #     ssd_print(key=mlperf_log.RUN_SET_RANDOM_SEED)
        if args.no_cuda:
            device = torch.device('cpu')
        else:
            torch.cuda.set_device(args.local_rank)
            device = torch.device('cuda')
            dist.init_process_group(backend='nccl',
                                    init_method='env://')
            # set seeds properly
            args.seed = broadcast_seeds(args.seed, device)
            local_seed = (args.seed + dist.get_rank()) % 2**32
            print(dist.get_rank(), "Using seed = {}".format(local_seed))
            torch.manual_seed(local_seed)
            np.random.seed(seed=local_seed)


    dboxes = dboxes300_coco()
    encoder = Encoder(dboxes)

    input_size = 300
    train_trans = SSDTransformer(dboxes, (input_size, input_size), val=False)
    val_trans = SSDTransformer(dboxes, (input_size, input_size), val=True)
    ssd_print(key=mlperf_log.INPUT_SIZE, value=input_size)

    val_annotate = os.path.join(args.data, "annotations/instances_val2017.json")
    val_coco_root = os.path.join(args.data, "images/val2017")
    train_annotate = os.path.join(args.data, "annotations/instances_train2017.json")
    train_coco_root = os.path.join(args.data, "images/train2017")

    cocoGt = COCO(annotation_file=val_annotate)
    val_coco = COCODetection(val_coco_root, val_annotate, val_trans)
    train_coco = COCODetection(train_coco_root, train_annotate, train_trans)

    #print("Number of labels: {}".format(train_coco.labelnum))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_coco)
    else:
        train_sampler = None
    train_dataloader = DataLoader(train_coco,
                                  batch_size=args.batch_size,
                                  shuffle=(train_sampler is None),
                                  sampler=train_sampler,
                                  num_workers=8)
    # set shuffle=True in DataLoader
    ssd_print(key=mlperf_log.INPUT_SHARD, value=None)
    ssd_print(key=mlperf_log.INPUT_ORDER)
    ssd_print(key=mlperf_log.INPUT_BATCH_SIZE, value=args.batch_size)


    ssd300 = SSD300(train_coco.labelnum)
    #if args.checkpoint is not None:
    #    print("loading model checkpoint", args.checkpoint)
    #    od = torch.load(args.checkpoint)
    #    ssd300.load_state_dict(od["model"])
    if args.checkpoint is not None:
        load_checkpoint(ssd300, args.checkpoint)    
        
    ssd300.train()
    if use_cuda:
        ssd300.cuda()
    loss_func = Loss(dboxes)
    if use_cuda:
        loss_func.cuda()
    if args.distributed:
        N_gpu = torch.distributed.get_world_size()
    else:
        N_gpu = 1
#####add for save and resume
    model_without_ddp = ssd300
	# parallelize
    if args.distributed:
        #aiss add
        ssd300 = DDP(ssd300)
        model_without_ddp = ssd300.module
###mlperf gov implement
    global_batch_size = N_gpu * args.batch_size
    current_lr = args.lr * (global_batch_size / 32)
    current_momentum = 0.9
    current_weight_decay = 5e-4
    optim = torch.optim.SGD(ssd300.parameters(), lr=current_lr,
                            momentum=current_momentum,
                            weight_decay=current_weight_decay)

    #if args.resume is not None:
    #    print("loading model checkpoint", args.resume)
    #    od = torch.load(args.resume)
    #    model_without_ddp.load_state_dict(od["model"])
    #    #saved_model = od["model"]
    #    ssd300.load_state_dict(model_without_ddp)
    #    optim.load_state_dict(od["optim"])
    #    args.iteration = od["iter"] + 1
        
#######nv modify
#    global_batch_size = (N_gpu * args.batch_size)
## mlperf only allows base_lr scaled by an integer
#    base_lr = 2.5e-3
#    requested_lr_multiplier = args.lr / base_lr
#    adjusted_multiplier = max(1, round(requested_lr_multiplier * global_batch_size / 32))
#
#    current_lr = base_lr * adjusted_multiplier
#    current_momentum = 0.9 
#    current_weight_decay = args.wd




    ssd_print(key=mlperf_log.OPT_NAME, value="SGD")
    ssd_print(key=mlperf_log.OPT_LR, value=current_lr)
    ssd_print(key=mlperf_log.OPT_MOMENTUM, value=current_momentum)
    ssd_print(key=mlperf_log.OPT_WEIGHT_DECAY,
                         value=current_weight_decay)
    eval_points = args.evaluation
    print("epoch", "nbatch", "loss")

    iter_num = args.iteration
    avg_loss = 0.0
    inv_map = {v:k for k,v in val_coco.label_map.items()}
    success = torch.zeros(1)
    if use_cuda:
        success = success.cuda()


    if args.warmup:
        nonempty_imgs = len(train_coco)
        wb = int(args.warmup * nonempty_imgs / (N_gpu*args.batch_size))
        warmup_step = lambda iter_num, current_lr: lr_warmup(optim, wb, iter_num, current_lr, args)###equals to def func(iter_num, current_lr): return lr_warmup(optim, wb, iter_num, current_lr, args)
        
    else:
        warmup_step = lambda iter_num, current_lr: None
#aiss add for perf print
    start_elapsed_time = time.time()
    num_elapsed_samples = 0
    last_printed_iter = args.iteration
    for epoch in range(args.epochs):
        ssd_print(key=mlperf_log.TRAIN_EPOCH, value=epoch)
        # set the epoch for the sampler
        if args.distributed:
            train_sampler.set_epoch(epoch)

        if epoch in args.lr_decay_schedule:
            current_lr *= 0.1
            print("")
	    #print("")
            print("lr decay step #{num}".format(num=args.lr_decay_schedule.index(epoch) + 1))
            for param_group in optim.param_groups:
                param_group['lr'] = current_lr
            ssd_print(key=mlperf_log.OPT_LR,
                                 value=current_lr)
        ####aiss add
        #if args.warmup:
        #    print("current_lr: no use")
        #else:
        #    print("current_lr: ",current_lr)
        print("current_lr: ",current_lr)
        for nbatch, (img, img_size, bbox, label) in enumerate(train_dataloader):

            if use_cuda:
                img = img.cuda()
            img = Variable(img, requires_grad=True)
            ploc, plabel = ssd300(img)
            trans_bbox = bbox.transpose(1,2).contiguous()
            if use_cuda:
                trans_bbox = trans_bbox.cuda()
                label = label.cuda()
            gloc, glabel = Variable(trans_bbox, requires_grad=False), \
                           Variable(label, requires_grad=False)
            loss = loss_func(ploc, plabel, gloc, glabel)

            if not np.isinf(loss.item()): avg_loss = 0.999*avg_loss + 0.001*loss.item()
            ###################aiss add########################
            len_train_loader=len(train_dataloader)
             #aiss 
            N = img.shape[0]
            num_elapsed_samples += N
            rank = dist.get_rank() if args.distributed else args.local_rank
             
            if  rank== 0 and iter_num % args.print_interval == 0:
                end_elapsed_time = time.time()
                elapsed_time = end_elapsed_time - start_elapsed_time 
                avg_samples_per_sec = num_elapsed_samples * N_gpu / elapsed_time 
    #modify epoch start from 1
                logging.info("Epoch:{:d}, Iteration: {:d}/{:d}, Loss function: {:6.3f}, Average Loss: {:6.3f}, avg. samples / sec: {:.2f}".format(epoch+1, iter_num, len_train_loader, loss.item(), avg_loss,  avg_samples_per_sec))
                last_printed_iter = iter_num
                start_elapsed_time = time.time()
                num_elapsed_samples = 0 

            optim.zero_grad()
            loss.backward()
            warmup_step(iter_num, current_lr)
            optim.step()

            iter_num += 1

        if epoch + 1 in eval_points:
            rank = dist.get_rank() if args.distributed else args.local_rank
            if args.distributed:
                world_size = float(dist.get_world_size())
                for bn_name, bn_buf in ssd300.module.named_buffers(recurse=True):
                    if ('running_mean' in bn_name) or ('running_var' in bn_name):
                        dist.all_reduce(bn_buf, op=dist.ReduceOp.SUM)
                        bn_buf /= world_size
            if rank == 0:
                #if not args.no_save:
                #    print("")
                #    print("saving model...")
                #    torch.save({"model" : ssd300.state_dict(), "label_map": train_coco.label_info},
                #               "./models/iter_{}.pt".format(iter_num))
                if not args.no_save:
                    if not os.path.isdir(args.snapshot_path):
                        os.mkdir(args.snapshot_path)
                    logging.info("")
                    logging.info("saving model...")
                    torch.save({"model" : model_without_ddp.state_dict(), "label_map": train_coco.label_info, "optim": optim.state_dict(), "iter": iter_num},
                               "{}/iter_{}.pt".format(args.snapshot_path, iter_num))

                if coco_eval(ssd300, val_coco, cocoGt, encoder, inv_map,
                            args.threshold, epoch + 1,iter_num):
                    success = torch.ones(1)
                    if use_cuda:
                        success = success.cuda()
            if args.distributed:
                dist.broadcast(success, 0)
            if success[0]:
                    return True

    return False

def main():
    args = parse_args()

    if args.local_rank == 0:
        if not os.path.isdir('./models'):
            os.mkdir('./models')

    torch.backends.cudnn.benchmark = True

    # start timing here
    ssd_print(key=mlperf_log.RUN_START)

    success = train300_mlperf_coco(args)

    # end timing here
    ssd_print(key=mlperf_log.RUN_STOP, value={"success": success})
    ssd_print(key=mlperf_log.RUN_FINAL)

if __name__ == "__main__":
    main()