ssd300.py 4.94 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
from base_model import ResNet34
from mlperf_compliance import mlperf_log
from mlperf_logger import ssd_print

class SSD300(nn.Module):
    """
        Build a SSD module to take 300x300 image input,
        and output 8732 per class bounding boxes

        vggt: pretrained vgg16 (partial) model
        label_num: number of classes (including background 0)
    """
    def __init__(self, label_num, backbone='resnet34', model_path="./resnet34-333f7ec4.pth"):

        super(SSD300, self).__init__()

        self.label_num = label_num

        if backbone == 'resnet34':
            self.model = ResNet34()
            ssd_print(key=mlperf_log.BACKBONE, value='resnet34')
            out_channels = 256
            out_size = 38
            self.out_chan = [out_channels, 512, 512, 256, 256, 256]
            ssd_print(key=mlperf_log.LOC_CONF_OUT_CHANNELS,
                                 value=self.out_chan)

        else:
            raise ValueError('Invalid backbone chosen')

        self._build_additional_features(out_size, self.out_chan)

        # after l2norm, conv7, conv8_2, conv9_2, conv10_2, conv11_2
        # classifer 1, 2, 3, 4, 5 ,6

        self.num_defaults = [4, 6, 6, 6, 4, 4]
        ssd_print(key=mlperf_log.NUM_DEFAULTS_PER_CELL,
                             value=self.num_defaults)
        self.loc = []
        self.conf = []

        for nd, oc in zip(self.num_defaults, self.out_chan):
            self.loc.append(nn.Conv2d(oc, nd*4, kernel_size=3, padding=1))
            self.conf.append(nn.Conv2d(oc, nd*label_num, kernel_size=3, padding=1))


        self.loc = nn.ModuleList(self.loc)
        self.conf = nn.ModuleList(self.conf)
        # intitalize all weights
        self._init_weights()

    def _build_additional_features(self, input_size, input_channels):
        idx = 0
        if input_size == 38:
            idx = 0
        elif input_size == 19:
            idx = 1
        elif input_size == 10:
            idx = 2

        self.additional_blocks = []

        if input_size == 38:
            self.additional_blocks.append(nn.Sequential(
                nn.Conv2d(input_channels[idx], 256, kernel_size=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, input_channels[idx+1], kernel_size=3, padding=1, stride=2),
                nn.ReLU(inplace=True),
            ))
            idx += 1

        self.additional_blocks.append(nn.Sequential(
            nn.Conv2d(input_channels[idx], 256, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, input_channels[idx+1], kernel_size=3, padding=1, stride=2),
            nn.ReLU(inplace=True),
        ))
        idx += 1

        # conv9_1, conv9_2
        self.additional_blocks.append(nn.Sequential(
            nn.Conv2d(input_channels[idx], 128, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, input_channels[idx+1], kernel_size=3, padding=1, stride=2),
            nn.ReLU(inplace=True),
        ))
        idx += 1

        # conv10_1, conv10_2
        self.additional_blocks.append(nn.Sequential(
            nn.Conv2d(input_channels[idx], 128, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, input_channels[idx+1], kernel_size=3),
            nn.ReLU(inplace=True),
        ))
        idx += 1

        # Only necessary in VGG for now
        if input_size >= 19:
            # conv11_1, conv11_2
            self.additional_blocks.append(nn.Sequential(
                nn.Conv2d(input_channels[idx], 128, kernel_size=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(128, input_channels[idx+1], kernel_size=3),
                nn.ReLU(inplace=True),
            ))

        self.additional_blocks = nn.ModuleList(self.additional_blocks)

    def _init_weights(self):

        layers = [
            *self.additional_blocks,
            *self.loc, *self.conf]

        for layer in layers:
            for param in layer.parameters():
                if param.dim() > 1: nn.init.xavier_uniform_(param)

    # Shape the classifier to the view of bboxes
    def bbox_view(self, src, loc, conf):
        ret = []
        for s, l, c in zip(src, loc, conf):
            ret.append((l(s).view(s.size(0), 4, -1), c(s).view(s.size(0), self.label_num, -1)))

        locs, confs = list(zip(*ret))
        locs, confs = torch.cat(locs, 2).contiguous(), torch.cat(confs, 2).contiguous()
        return locs, confs

    def forward(self, data):

        layers = self.model(data)

        # last result from network goes into additional blocks
        x = layers[-1]
        additional_results = []
        for i, l in enumerate(self.additional_blocks):
            x = l(x)
            additional_results.append(x)

        src = [*layers, *additional_results]
        # Feature Map 38x38x4, 19x19x6, 10x10x6, 5x5x6, 3x3x4, 1x1x4

        locs, confs = self.bbox_view(src, self.loc, self.conf)

        # For SSD 300, shall return nbatch x 8732 x {nlabels, nlocs} results
        return locs, confs