README_origin.md 8.94 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Introduction

This directory contains PyTorch YOLOv3 software developed by Ultralytics LLC, and **is freely available for redistribution under the GPL-3.0 license**. For more information please visit https://www.ultralytics.com.

# Description

The https://github.com/ultralytics/yolov3 repo contains inference and training code for YOLOv3 in PyTorch. The code works on Linux, MacOS and Windows. Training is done on the COCO dataset by default: https://cocodataset.org/#home. **Credit to Joseph Redmon for YOLO:** https://pjreddie.com/darknet/yolo/.

# Requirements

Python 3.7 or later with all of the `pip install -U -r requirements.txt` packages including:
- `torch >= 1.4`
- `opencv-python`
- `Pillow`

All dependencies are included in the associated docker images. Docker requirements are: 
- Nvidia Driver >= 440.44
- Docker Engine - CE >= 19.03

# Tutorials

* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) < highly recommended!!
* [Train Single Class](https://github.com/ultralytics/yolov3/wiki/Example:-Train-Single-Class)
* [Google Colab Notebook](https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb) with quick training, inference and testing examples
* [GCP Quickstart](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
* [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart) 
* [A TensorRT Implementation of YOLOv3-SPP](https://github.com/wang-xinyu/tensorrtx/tree/master/yolov3-spp) 

# Training

**Start Training:** `python3 train.py` to begin training after downloading COCO data with `data/get_coco2017.sh`. Each epoch trains on 117,263 images from the train and validate COCO sets, and tests on 5000 images from the COCO validate set.

**Resume Training:** `python3 train.py --resume` to resume training from `weights/last.pt`.

**Plot Training:** `from utils import utils; utils.plot_results()`

<img src="https://user-images.githubusercontent.com/26833433/78175826-599d4800-7410-11ea-87d4-f629071838f6.png" width="900">

## Image Augmentation

`datasets.py` applies OpenCV-powered (https://opencv.org/) augmentation to the input image. We use a **mosaic dataloader** (pictured below) to increase image variability during training.

<img src="https://user-images.githubusercontent.com/26833433/66699231-27beea80-ece5-11e9-9cad-bdf9d82c500a.jpg" width="900">

## Speed

https://cloud.google.com/deep-learning-vm/  
**Machine type:** preemptible [n1-standard-16](https://cloud.google.com/compute/docs/machine-types) (16 vCPUs, 60 GB memory)   
**CPU platform:** Intel Skylake  
**GPUs:** K80 ($0.20/hr), T4 ($0.35/hr), V100 ($0.83/hr) CUDA with [Nvidia Apex](https://github.com/NVIDIA/apex) FP16/32  
**HDD:** 1 TB SSD  
**Dataset:** COCO train 2014 (117,263 images)  
**Model:** `yolov3-spp.cfg`  
**Command:**  `python3 train.py --img 416 --batch 32 --accum 2`

GPU |n| `--batch --accum` | img/s | epoch<br>time | epoch<br>cost
--- |--- |--- |--- |--- |---
K80    |1| 32 x 2 | 11  | 175 min  | $0.58
T4     |1<br>2| 32 x 2<br>64 x 1 | 41<br>61 | 48 min<br>32 min | $0.28<br>$0.36
V100   |1<br>2| 32 x 2<br>64 x 1 | 122<br>**178** | 16 min<br>**11 min** | **$0.23**<br>$0.31
2080Ti |1<br>2| 32 x 2<br>64 x 1 | 81<br>140 | 24 min<br>14 min | -<br>-

# Inference

```bash
python3 detect.py --source ...
```

- Image:  `--source file.jpg`
- Video:  `--source file.mp4`
- Directory:  `--source dir/`
- Webcam:  `--source 0`
- RTSP stream:  `--source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa`
- HTTP stream:  `--source http://wmccpinetop.axiscam.net/mjpg/video.mjpg`

**YOLOv3:** `python3 detect.py --cfg cfg/yolov3.cfg --weights yolov3.pt`  
<img src="https://user-images.githubusercontent.com/26833433/64067835-51d5b500-cc2f-11e9-982e-843f7f9a6ea2.jpg" width="500">

**YOLOv3-tiny:** `python3 detect.py --cfg cfg/yolov3-tiny.cfg --weights yolov3-tiny.pt`  
<img src="https://user-images.githubusercontent.com/26833433/64067834-51d5b500-cc2f-11e9-9357-c485b159a20b.jpg" width="500">

**YOLOv3-SPP:** `python3 detect.py --cfg cfg/yolov3-spp.cfg --weights yolov3-spp.pt`  
<img src="https://user-images.githubusercontent.com/26833433/64067833-51d5b500-cc2f-11e9-8208-6fe197809131.jpg" width="500">


# Pretrained Weights

Download from: [https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0](https://drive.google.com/open?id=1LezFG5g3BCW6iYaV89B2i64cqEUZD7e0)

## Darknet Conversion

```bash
$ git clone https://github.com/ultralytics/yolov3 && cd yolov3

# convert darknet cfg/weights to pytorch model
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.weights')"
Success: converted 'weights/yolov3-spp.weights' to 'converted.pt'

# convert cfg/pytorch model to darknet weights
$ python3  -c "from models import *; convert('cfg/yolov3-spp.cfg', 'weights/yolov3-spp.pt')"
Success: converted 'weights/yolov3-spp.pt' to 'converted.weights'
```

# mAP

<i></i>                      |Size |COCO mAP<br>@0.5...0.95 |COCO mAP<br>@0.5 
---                          | ---         | ---         | ---
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |320 |14.0<br>28.7<br>30.5<br>**37.7** |29.1<br>51.8<br>52.3<br>**56.8**
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |416 |16.0<br>31.2<br>33.9<br>**41.2** |33.0<br>55.4<br>56.9<br>**60.6**
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |512 |16.6<br>32.7<br>35.6<br>**42.6** |34.9<br>57.7<br>59.5<br>**62.4**
YOLOv3-tiny<br>YOLOv3<br>YOLOv3-SPP<br>**[YOLOv3-SPP-ultralytics](https://drive.google.com/open?id=1UcR-zVoMs7DH5dj3N1bswkiQTA4dmKF4)** |608 |16.6<br>33.1<br>37.0<br>**43.1** |35.4<br>58.2<br>60.7<br>**62.8**

- mAP@0.5 run at `--iou-thr 0.5`, mAP@0.5...0.95 run at `--iou-thr 0.7`
- Darknet results: https://arxiv.org/abs/1804.02767

```bash
$ python3 test.py --cfg yolov3-spp.cfg --weights yolov3-spp-ultralytics.pt --img 640 --augment

Namespace(augment=True, batch_size=16, cfg='cfg/yolov3-spp.cfg', conf_thres=0.001, data='coco2014.data', device='', img_size=640, iou_thres=0.6, save_json=True, single_cls=False, task='test', weights='weight
Using CUDA device0 _CudaDeviceProperties(name='Tesla V100-SXM2-16GB', total_memory=16130MB)

               Class    Images   Targets         P         R   mAP@0.5        F1: 100%|█████████| 313/313 [03:00<00:00,  1.74it/s]
                 all     5e+03  3.51e+04     0.375     0.743      0.64     0.492

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.456
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.647
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.496
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.263
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.501
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.596
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.361
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.597
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.666
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.492
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.719
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.810

Speed: 17.5/2.3/19.9 ms inference/NMS/total per 640x640 image at batch-size 16
```
<!-- Speed: 11.4/2.2/13.6 ms inference/NMS/total per 608x608 image at batch-size 1 -->


# Reproduce Our Results

This command trains `yolov3-spp.cfg` from scratch to our mAP above. Training takes about one week on a 2080Ti.
```bash
$ python3 train.py --weights '' --cfg yolov3-spp.cfg --epochs 300 --batch 16 --accum 4 --multi
```
<img src="https://user-images.githubusercontent.com/26833433/77986559-408b7e80-72cc-11ea-9c4f-5d7820840a98.png" width="900">

# Reproduce Our Environment

To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:

- **GCP** Deep Learning VM with $300 free credit offer: See our [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart) 
- **Google Colab Notebook** with 12 hours of free GPU time: [Google Colab Notebook](https://colab.sandbox.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb)
- **Docker Image** from https://hub.docker.com/r/ultralytics/yolov3. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart) 
# Citation

[![DOI](https://zenodo.org/badge/146165888.svg)](https://zenodo.org/badge/latestdoi/146165888)

# Contact

**Issues should be raised directly in the repository.** For additional questions or comments please email Glenn Jocher at glenn.jocher@ultralytics.com or visit us at https://contact.ultralytics.com.