pretraining.py 10.3 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#! -*- coding: utf-8 -*-
# 预训练脚本,多GPU版/TPU版本

import os, re
os.environ['TF_KERAS'] = '1'  # 必须使用tf.keras

import tensorflow as tf
from data_utils import *
from bert4keras.models import build_transformer_model
from bert4keras.backend import keras, K
from bert4keras.optimizers import Adam
from bert4keras.optimizers import extend_with_weight_decay
from bert4keras.optimizers import extend_with_layer_adaptation
from bert4keras.optimizers import extend_with_piecewise_linear_lr
from bert4keras.optimizers import extend_with_gradient_accumulation
from keras.layers import Input, Lambda
from keras.models import Model
from keras.callbacks import Callback, CSVLogger

model = 'roberta'

# 语料路径和模型保存路径
# 如果是TPU训练,那么语料必须存放在Google Cloud Storage上面,
# 路径必须以gs://开头;如果是GPU训练,改为普通路径即可。
model_saved_path = 'gs://xxxx/bert4keras/saved_model/bert_model.ckpt'
corpus_paths = [
    'gs://xxxx/bert4keras/corpus/corpus.%s.tfrecord' % i for i in range(10)
]

# 其他配置
sequence_length = 512
batch_size = 4096
config_path = '/home/spaces_ac_cn/chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/home/spaces_ac_cn/chinese_L-12_H-768_A-12/bert_model.ckpt'  # 如果从零训练,就设为None
learning_rate = 0.00176
weight_decay_rate = 0.01
num_warmup_steps = 3125
num_train_steps = 125000
steps_per_epoch = 10000
grad_accum_steps = 16  # 大于1即表明使用梯度累积
epochs = num_train_steps * grad_accum_steps // steps_per_epoch
exclude_from_weight_decay = ['Norm', 'bias']
exclude_from_layer_adaptation = ['Norm', 'bias']
tpu_address = 'grpc://xxx.xxx.xxx.xxx:8470'  # 如果用多GPU跑,直接设为None
which_optimizer = 'lamb'  # adam 或 lamb,均自带weight decay
lr_schedule = {
    num_warmup_steps * grad_accum_steps: 1.0,
    num_train_steps * grad_accum_steps: 0.0,
}
floatx = K.floatx()

# 读取数据集,构建数据张量

if model == 'roberta':

    dataset = TrainingDatasetRoBERTa.load_tfrecord(
        record_names=corpus_paths,
        sequence_length=sequence_length,
        batch_size=batch_size // grad_accum_steps,
    )

elif model == 'gpt':

    dataset = TrainingDatasetGPT.load_tfrecord(
        record_names=corpus_paths,
        sequence_length=sequence_length,
        batch_size=batch_size // grad_accum_steps,
    )

elif model == 'unilm':

    dataset = TrainingDatasetUniLM.load_tfrecord(
        record_names=corpus_paths,
        sequence_length=sequence_length,
        batch_size=batch_size // grad_accum_steps,
        token_sep_id=3,  # 这里需要自己指定[SEP]的id
    )


def build_transformer_model_with_mlm():
    """带mlm的bert模型
    """
    bert = build_transformer_model(
        config_path, with_mlm='linear', return_keras_model=False
    )
    proba = bert.model.output

    # 辅助输入
    token_ids = Input(shape=(None,), dtype='int64', name='token_ids')  # 目标id
    is_masked = Input(shape=(None,), dtype=floatx, name='is_masked')  # mask标记

    def mlm_loss(inputs):
        """计算loss的函数,需要封装为一个层
        """
        y_true, y_pred, mask = inputs
        loss = K.sparse_categorical_crossentropy(
            y_true, y_pred, from_logits=True
        )
        loss = K.sum(loss * mask) / (K.sum(mask) + K.epsilon())
        return loss

    def mlm_acc(inputs):
        """计算准确率的函数,需要封装为一个层
        """
        y_true, y_pred, mask = inputs
        y_true = K.cast(y_true, floatx)
        acc = keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
        acc = K.sum(acc * mask) / (K.sum(mask) + K.epsilon())
        return acc

    mlm_loss = Lambda(mlm_loss, name='mlm_loss')([token_ids, proba, is_masked])
    mlm_acc = Lambda(mlm_acc, name='mlm_acc')([token_ids, proba, is_masked])

    train_model = Model(
        bert.model.inputs + [token_ids, is_masked], [mlm_loss, mlm_acc]
    )

    loss = {
        'mlm_loss': lambda y_true, y_pred: y_pred,
        'mlm_acc': lambda y_true, y_pred: K.stop_gradient(y_pred),
    }

    return bert, train_model, loss


def build_transformer_model_with_lm():
    """带lm的bert模型
    """
    bert = build_transformer_model(
        config_path,
        with_mlm='linear',
        application='lm',
        return_keras_model=False
    )
    token_ids = bert.model.inputs[0]
    proba = bert.model.output

    def lm_loss(inputs, mask=None):
        """计算loss的函数,需要封装为一个层
        """
        y_true, y_pred = inputs
        y_true, y_pred = y_true[:, 1:], y_pred[:, :-1]

        if mask is None:
            mask = 1.0
        else:
            mask = K.cast(mask[1][:, 1:], floatx)

        loss = K.sparse_categorical_crossentropy(
            y_true, y_pred, from_logits=True
        )
        loss = K.sum(loss * mask) / (K.sum(mask) + K.epsilon())
        return loss

    def lm_acc(inputs, mask=None):
        """计算准确率的函数,需要封装为一个层
        """
        y_true, y_pred = inputs
        y_true, y_pred = K.cast(y_true[:, 1:], floatx), y_pred[:, :-1]

        if mask is None:
            mask = 1.0
        else:
            mask = K.cast(mask[1][:, 1:], floatx)

        acc = keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
        acc = K.sum(acc * mask) / (K.sum(mask) + K.epsilon())
        return acc

    lm_loss = Lambda(lm_loss, name='lm_loss')([token_ids, proba])
    lm_acc = Lambda(lm_acc, name='lm_acc')([token_ids, proba])

    train_model = Model(bert.model.inputs, [lm_loss, lm_acc])

    loss = {
        'lm_loss': lambda y_true, y_pred: y_pred,
        'lm_acc': lambda y_true, y_pred: K.stop_gradient(y_pred),
    }

    return bert, train_model, loss


def build_transformer_model_with_unilm():
    """带unilm的bert模型
    """
    bert = build_transformer_model(
        config_path,
        with_mlm='linear',
        application='unilm',
        return_keras_model=False
    )
    token_ids = bert.model.inputs[0]
    segment_ids = bert.model.inputs[1]
    proba = bert.model.output

    def unilm_loss(inputs, mask=None):
        """计算loss的函数,需要封装为一个层
        """
        y_true, y_pred, segment_ids = inputs
        y_true, y_pred = y_true[:, 1:], y_pred[:, :-1]

        if mask is None:
            mask = 1.0
        else:
            mask = K.cast(mask[1][:, 1:], floatx)

        segment_ids = K.cast(segment_ids, floatx)
        mask = mask * segment_ids[:, 1:]

        loss = K.sparse_categorical_crossentropy(
            y_true, y_pred, from_logits=True
        )
        loss = K.sum(loss * mask) / (K.sum(mask) + K.epsilon())
        return loss

    def unilm_acc(inputs, mask=None):
        """计算准确率的函数,需要封装为一个层
        """
        y_true, y_pred, segment_ids = inputs
        y_true, y_pred = K.cast(y_true[:, 1:], floatx), y_pred[:, :-1]

        if mask is None:
            mask = 1.0
        else:
            mask = K.cast(mask[1][:, 1:], floatx)

        segment_ids = K.cast(segment_ids, floatx)
        mask = mask * segment_ids[:, 1:]

        acc = keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
        acc = K.sum(acc * mask) / (K.sum(mask) + K.epsilon())
        return acc

    token_proba_segment = [token_ids, proba, segment_ids]
    unilm_loss = Lambda(unilm_loss, name='unilm_loss')(token_proba_segment)
    unilm_acc = Lambda(unilm_acc, name='unilm_acc')(token_proba_segment)

    train_model = Model(bert.model.inputs, [unilm_loss, unilm_acc])

    loss = {
        'unilm_loss': lambda y_true, y_pred: y_pred,
        'unilm_acc': lambda y_true, y_pred: K.stop_gradient(y_pred),
    }

    return bert, train_model, loss


def build_transformer_model_for_pretraining():
    """构建训练模型,通用于TPU/GPU
    注意全程要用keras标准的层写法,一些比较灵活的“移花接木”式的
    写法可能会在TPU上训练失败。此外,要注意的是TPU并非支持所有
    tensorflow算子,尤其不支持动态(变长)算子,因此编写相应运算
    时要格外留意。
    """
    if model == 'roberta':
        bert, train_model, loss = build_transformer_model_with_mlm()
    elif model == 'gpt':
        bert, train_model, loss = build_transformer_model_with_lm()
    elif model == 'unilm':
        bert, train_model, loss = build_transformer_model_with_unilm()

    # 优化器
    optimizer = extend_with_weight_decay(Adam)
    if which_optimizer == 'lamb':
        optimizer = extend_with_layer_adaptation(optimizer)
    optimizer = extend_with_piecewise_linear_lr(optimizer)
    optimizer_params = {
        'learning_rate': learning_rate,
        'lr_schedule': lr_schedule,
        'weight_decay_rate': weight_decay_rate,
        'exclude_from_weight_decay': exclude_from_weight_decay,
        'exclude_from_layer_adaptation': exclude_from_layer_adaptation,
        'bias_correction': False,
    }
    if grad_accum_steps > 1:
        optimizer = extend_with_gradient_accumulation(optimizer)
        optimizer_params['grad_accum_steps'] = grad_accum_steps
    optimizer = optimizer(**optimizer_params)

    # 模型定型
    train_model.compile(loss=loss, optimizer=optimizer)

    # 如果传入权重,则加载。注:须在此处加载,才保证不报错。
    if checkpoint_path is not None:
        bert.load_weights_from_checkpoint(checkpoint_path)

    return train_model


if tpu_address is None:
    # 单机多卡模式(多机多卡也类似,但需要硬软件配合,请参考https://tf.wiki)
    strategy = tf.distribute.MirroredStrategy()
else:
    # TPU模式
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu=tpu_address
    )
    tf.config.experimental_connect_to_host(resolver.master())
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.experimental.TPUStrategy(resolver)

with strategy.scope():
    train_model = build_transformer_model_for_pretraining()
    train_model.summary()


class ModelCheckpoint(keras.callbacks.Callback):
    """自动保存最新模型
    """
    def on_epoch_end(self, epoch, logs=None):
        self.model.save_weights(model_saved_path, overwrite=True)


# 保存模型
checkpoint = ModelCheckpoint()
# 记录日志
csv_logger = keras.callbacks.CSVLogger('training.log')

# 模型训练
train_model.fit(
    dataset,
    steps_per_epoch=steps_per_epoch,
    epochs=epochs,
    callbacks=[checkpoint, csv_logger],
)