task_iflytek_adversarial_training.py 6.41 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#! -*- coding:utf-8 -*-
# 通过对抗训练增强模型的泛化性能
# 比CLUE榜单公开的同数据集上的BERT base的成绩高2%
# 数据集:IFLYTEK' 长文本分类 (https://github.com/CLUEbenchmark/CLUE)
# 博客:https://kexue.fm/archives/7234
# 适用于Keras 2.3.1

import json
import numpy as np
from bert4keras.backend import keras, search_layer, K
from bert4keras.tokenizers import Tokenizer
from bert4keras.models import build_transformer_model
from bert4keras.optimizers import Adam
from bert4keras.snippets import sequence_padding, DataGenerator
from keras.layers import Lambda, Dense
from tqdm import tqdm

num_classes = 119
maxlen = 128
batch_size = 32

# BERT base
config_path = '/root/kg/bert/chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = '/root/kg/bert/chinese_L-12_H-768_A-12/bert_model.ckpt'
dict_path = '/root/kg/bert/chinese_L-12_H-768_A-12/vocab.txt'


def load_data(filename):
    """加载数据
    单条格式:(文本, 标签id)
    """
    D = []
    with open(filename) as f:
        for i, l in enumerate(f):
            l = json.loads(l)
            text, label = l['sentence'], l['label']
            D.append((text, int(label)))
    return D


# 加载数据集
train_data = load_data(
    '/root/CLUE-master/baselines/CLUEdataset/iflytek/train.json'
)
valid_data = load_data(
    '/root/CLUE-master/baselines/CLUEdataset/iflytek/dev.json'
)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)


class data_generator(DataGenerator):
    """数据生成器
    """
    def __iter__(self, random=False):
        batch_token_ids, batch_segment_ids, batch_labels = [], [], []
        for is_end, (text, label) in self.sample(random):
            token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
            batch_token_ids.append(token_ids)
            batch_segment_ids.append(segment_ids)
            batch_labels.append([label])
            if len(batch_token_ids) == self.batch_size or is_end:
                batch_token_ids = sequence_padding(batch_token_ids)
                batch_segment_ids = sequence_padding(batch_segment_ids)
                batch_labels = sequence_padding(batch_labels)
                yield [batch_token_ids, batch_segment_ids], batch_labels
                batch_token_ids, batch_segment_ids, batch_labels = [], [], []


# 转换数据集
train_generator = data_generator(train_data, batch_size)
valid_generator = data_generator(valid_data, batch_size)

# 加载预训练模型
bert = build_transformer_model(
    config_path=config_path,
    checkpoint_path=checkpoint_path,
    return_keras_model=False,
)

output = Lambda(lambda x: x[:, 0])(bert.model.output)
output = Dense(
    units=num_classes,
    activation='softmax',
    kernel_initializer=bert.initializer
)(output)

model = keras.models.Model(bert.model.input, output)
model.summary()

model.compile(
    loss='sparse_categorical_crossentropy',
    optimizer=Adam(2e-5),
    metrics=['sparse_categorical_accuracy'],
)


def adversarial_training(model, embedding_name, epsilon=1):
    """给模型添加对抗训练
    其中model是需要添加对抗训练的keras模型,embedding_name
    则是model里边Embedding层的名字。要在模型compile之后使用。
    """
    if model.train_function is None:  # 如果还没有训练函数
        model._make_train_function()  # 手动make
    old_train_function = model.train_function  # 备份旧的训练函数

    # 查找Embedding层
    for output in model.outputs:
        embedding_layer = search_layer(output, embedding_name)
        if embedding_layer is not None:
            break
    if embedding_layer is None:
        raise Exception('Embedding layer not found')

    # 求Embedding梯度
    embeddings = embedding_layer.embeddings  # Embedding矩阵
    gradients = K.gradients(model.total_loss, [embeddings])  # Embedding梯度
    gradients = K.zeros_like(embeddings) + gradients[0]  # 转为dense tensor

    # 封装为函数
    inputs = (
        model._feed_inputs + model._feed_targets + model._feed_sample_weights
    )  # 所有输入层
    embedding_gradients = K.function(
        inputs=inputs,
        outputs=[gradients],
        name='embedding_gradients',
    )  # 封装为函数

    def train_function(inputs):  # 重新定义训练函数
        grads = embedding_gradients(inputs)[0]  # Embedding梯度
        delta = epsilon * grads / (np.sqrt((grads**2).sum()) + 1e-8)  # 计算扰动
        K.set_value(embeddings, K.eval(embeddings) + delta)  # 注入扰动
        outputs = old_train_function(inputs)  # 梯度下降
        K.set_value(embeddings, K.eval(embeddings) - delta)  # 删除扰动
        return outputs

    model.train_function = train_function  # 覆盖原训练函数


# 写好函数后,启用对抗训练只需要一行代码
adversarial_training(model, 'Embedding-Token', 0.5)


def evaluate(data):
    total, right = 0., 0.
    for x_true, y_true in data:
        y_pred = model.predict(x_true).argmax(axis=1)
        y_true = y_true[:, 0]
        total += len(y_true)
        right += (y_true == y_pred).sum()
    return right / total


class Evaluator(keras.callbacks.Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_acc = 0.

    def on_epoch_end(self, epoch, logs=None):
        val_acc = evaluate(valid_generator)
        if val_acc > self.best_val_acc:
            self.best_val_acc = val_acc
            model.save_weights('best_model.weights')
        print(
            u'val_acc: %.5f, best_val_acc: %.5f\n' %
            (val_acc, self.best_val_acc)
        )


def predict_to_file(in_file, out_file):
    """输出预测结果到文件
    结果文件可以提交到 https://www.cluebenchmarks.com 评测。
    """
    fw = open(out_file, 'w')
    with open(in_file) as fr:
        for l in tqdm(fr):
            l = json.loads(l)
            text = l['sentence']
            token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
            label = model.predict([[token_ids], [segment_ids]])[0].argmax()
            l = json.dumps({'id': str(l['id']), 'label': str(label)})
            fw.write(l + '\n')
    fw.close()


if __name__ == '__main__':

    evaluator = Evaluator()

    model.fit(
        train_generator.forfit(),
        steps_per_epoch=len(train_generator),
        epochs=50,
        callbacks=[evaluator]
    )

else:

    model.load_weights('best_model.weights')
    # predict_to_file('/root/CLUE-master/baselines/CLUEdataset/iflytek/test.json', 'iflytek_predict.json')