train.md 3.47 KB
Newer Older
unknown's avatar
unknown committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# MMsegmentation算例测试

## 测试前准备

使用cityscapes数据集.链接:https://pan.baidu.com/s/1kxqTJxoyqcIGTCPOMbzB_g  提取码:asie

### 环境部署

```python
yum install python3
yum install libquadmath
yum install numactl
yum install openmpi3
yum install glog
yum install lmdb-libs
yum install opencv-core
yum install opencv
yum install openblas-serial
pip3 install --upgrade pip
pip3 install opencv-python
```

### 安装python依赖包

```python
pip3 install torch-1.10.0a0+gitcc7c9c7-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torchvision-0.10.0a0+300a8a4-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install mmcv_full-1.3.16-cp36-cp36m-linux_x86_64.whl -i https://pypi.tuna.tsinghua.edu.cn/simple
mmpose安装
cd mmsegmentation
pip3 install -e .
```

注:测试不同版本的dtk,需安装对应版本的库whl包,dtk22.04.1使用python3.7,dtk21.10.1使用python3.6,如果测试优化后的版本,需要设置export HIP_UPSAMPLE_OPTIMIZE=1

## PSPNet R50测试

### 单卡测试(单精度)

```python
./sing_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py
```

若使用dtk22.04.1测试,需设置 `export MIOPEN_FIND_MODE=1,export MIOPEN_USE_APPROXIMATE_PERFORMANCE=0`以下测试均相同.

#### 参数说明

configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659172384601](image/train/1659172384601.png)

#### 性能关注:time

### 多卡测试(单精度)

```python
./multi_test.sh configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py
```

## DeepLabV3 R50测试

### 单卡测试(单精度)

```python
./sing_test.sh configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py
```

#### 参数说明

configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659172468356](image/train/1659172468356.png)

#### 性能关注:time

### 多卡测试(单精度)

```python
./multi_test.sh configs/deeplabv3/deeplabv3_r50-d8_512x1024_40k_cityscapes.py
```

## FCN R50测试

### 单卡测试(单精度)

```python
./sing_test.sh configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py
```

#### 参数说明

configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659172530175](image/train/1659172530175.png)

#### 性能关注:time

### 多卡测试(单精度)

```python
./multi_test.sh configs/fcn/fcn_r50-d8_512x1024_40k_cityscapes.py
```

## UperNet R50测试

### 单卡测试(单精度)

```python
./sing_test.sh configs/upernet/upernet_r50_512x1024_40k_cityscapes.py
```

#### 参数说明

configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659172631957](image/train/1659172631957.png)

#### 性能关注:time

### 多卡测试(单精度)

```python
./multi_test.sh configs/upernet/upernet_r50_512x1024_40k_cityscapes.py
```

## DeepLabV3plus_R50测试

### 单卡测试(单精度)

```python
./sing_test.sh configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py
```

#### 参数说明

configs/_base_/datasets/cityscapes.py中batch_size=samples_per_gpu*卡数,性能计算方法:batch_size/time
![1659172696867](image/train/1659172696867.png)

#### 性能关注:time

### 多卡测试(单精度)

```python
./multi_test.sh configs/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes.py
```