train.py 1.73 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tensorflow as tf


def scale_loss_for_distribution(loss_value):
    """Scales and returns the given loss value by the number of replicas."""
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    if num_replicas > 1:
        loss_value *= 1.0 / num_replicas
    return loss_value


def convert_inputs_to_tf_dataset(x=None, y=None, sample_weight=None, batch_size=None):
    if sample_weight is not None:
        raise ValueError("Contrastive trainers do not yet support `sample_weight`.")

    if isinstance(x, tf.data.Dataset):
        if y is not None or batch_size is not None:
            raise ValueError(
                "When `x` is a `tf.data.Dataset`, please do not provide a value for "
                f"`y` or `batch_size`.  Got `y={y}`, `batch_size={batch_size}`."
            )
        return x

    # batch_size defaults to 32, as it does in fit().
    batch_size = batch_size or 32
    # Parse inputs
    inputs = x
    if y is not None:
        inputs = (x, y)

    # Construct tf.data.Dataset
    dataset = tf.data.Dataset.from_tensor_slices(inputs)
    if batch_size is not None:
        dataset = dataset.batch(batch_size)
    return dataset