preprocessing_test.py 2.25 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tensorflow as tf

from keras_cv.utils import preprocessing


class MockRandomGenerator:
    def __init__(self, value):
        self.value = value

    def random_uniform(self, shape, minval, maxval, dtype=None):
        del minval, maxval
        return tf.constant(self.value, dtype=dtype)


class PreprocessingTestCase(tf.test.TestCase):
    def setUp(self):
        super().setUp()

    def test_transform_to_standard_range_neg_one_range(self):
        x = tf.constant([-1, 0, 1])
        x = preprocessing.transform_value_range(
            x, original_range=[-1, 1], target_range=[0, 255]
        )
        self.assertAllClose(x, [0.0, 127.5, 255.0])

    def test_transform_to_same_range(self):
        x = tf.constant([-1, 0, 1])
        x = preprocessing.transform_value_range(
            x, original_range=[0, 255], target_range=[0, 255]
        )
        self.assertAllClose(x, [-1, 0, 1])

    def test_transform_to_standard_range(self):
        x = tf.constant([8 / 255, 9 / 255, 255 / 255])
        x = preprocessing.transform_value_range(
            x, original_range=[0, 1], target_range=[0, 255]
        )
        self.assertAllClose(x, [8.0, 9.0, 255.0])

    def test_transform_to_value_range(self):
        x = tf.constant([128.0, 255.0, 0.0])
        x = preprocessing.transform_value_range(
            x, original_range=[0, 255], target_range=[0, 1]
        )
        self.assertAllClose(x, [128 / 255, 1, 0])

    def test_random_inversion(self):
        generator = MockRandomGenerator(0.75)
        self.assertEqual(preprocessing.random_inversion(generator), -1.0)
        generator = MockRandomGenerator(0.25)
        self.assertEqual(preprocessing.random_inversion(generator), 1.0)