point_cloud_test.py 10 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import tensorflow as tf
from absl.testing import parameterized

from keras_cv import ops


class Boxes3DTestCase(tf.test.TestCase, parameterized.TestCase):
    def test_convert_center_to_corners(self):
        boxes = tf.constant(
            [
                [[1, 2, 3, 4, 3, 6, 0], [1, 2, 3, 4, 3, 6, 0]],
                [[1, 2, 3, 4, 3, 6, np.pi / 2.0], [1, 2, 3, 4, 3, 6, np.pi / 2.0]],
            ]
        )
        corners = ops._center_xyzWHD_to_corner_xyz(boxes)
        self.assertEqual((2, 2, 8, 3), corners.shape)
        for i in [0, 1]:
            self.assertAllClose(-1, np.min(corners[0, i, :, 0]))
            self.assertAllClose(3, np.max(corners[0, i, :, 0]))
            self.assertAllClose(0.5, np.min(corners[0, i, :, 1]))
            self.assertAllClose(3.5, np.max(corners[0, i, :, 1]))
            self.assertAllClose(0, np.min(corners[0, i, :, 2]))
            self.assertAllClose(6, np.max(corners[0, i, :, 2]))

        for i in [0, 1]:
            self.assertAllClose(-0.5, np.min(corners[1, i, :, 0]))
            self.assertAllClose(2.5, np.max(corners[1, i, :, 0]))
            self.assertAllClose(0.0, np.min(corners[1, i, :, 1]))
            self.assertAllClose(4.0, np.max(corners[1, i, :, 1]))
            self.assertAllClose(0, np.min(corners[1, i, :, 2]))
            self.assertAllClose(6, np.max(corners[1, i, :, 2]))

    def test_within_box2d(self):
        boxes = tf.constant(
            [[[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]]], dtype=tf.float32
        )
        points = tf.constant(
            [
                [-0.5, -0.5],
                [0.5, -0.5],
                [1.5, -0.5],
                [1.5, 0.5],
                [1.5, 1.5],
                [0.5, 1.5],
                [-0.5, 1.5],
                [-0.5, 0.5],
                [1.0, 1.0],
                [0.5, 0.5],
            ],
            dtype=tf.float32,
        )
        is_inside = ops.is_within_box2d(points, boxes)
        expected = [[False]] * 8 + [[True]] * 2
        self.assertAllEqual(expected, is_inside)

    def test_within_zero_box2d(self):
        bbox = tf.constant(
            [[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]], dtype=tf.float32
        )
        points = tf.constant(
            [
                [-0.5, -0.5],
                [0.5, -0.5],
                [1.5, -0.5],
                [1.5, 0.5],
                [1.5, 1.5],
                [0.5, 1.5],
                [-0.5, 1.5],
                [-0.5, 0.5],
                [1.0, 1.0],
                [0.5, 0.5],
            ],
            dtype=tf.float32,
        )
        is_inside = ops.is_within_box2d(points, bbox)
        expected = [[False]] * 10
        self.assertAllEqual(expected, is_inside)

    def test_is_on_lefthand_side(self):
        v1 = tf.constant([[0.0, 0.0]], dtype=tf.float32)
        v2 = tf.constant([[1.0, 0.0]], dtype=tf.float32)
        p = tf.constant([[0.5, 0.5], [-1.0, -3], [-1.0, 1.0]], dtype=tf.float32)
        res = ops._is_on_lefthand_side(p, v1, v2)
        self.assertAllEqual([[True, False, True]], res)
        res = ops._is_on_lefthand_side(v1, v1, v2)
        self.assertAllEqual([[True]], res)
        res = ops._is_on_lefthand_side(v2, v1, v2)
        self.assertAllEqual([[True]], res)

    @parameterized.named_parameters(
        ("without_rotation", 0.0),
        ("with_rotation_1_rad", 1.0),
        ("with_rotation_2_rad", 2.0),
        ("with_rotation_3_rad", 3.0),
    )
    def test_box_area(self, angle):
        boxes = tf.constant(
            [
                [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]],
                [[0.0, 0.0], [2.0, 0.0], [2.0, 1.0], [0.0, 1.0]],
                [[0.0, 0.0], [2.0, 0.0], [2.0, 2.0], [0.0, 2.0]],
            ],
            dtype=tf.float32,
        )
        expected = [[1.0], [2.0], [4.0]]

        def _rotate(bbox, theta):
            rotation_matrix = tf.reshape(
                [tf.cos(theta), -tf.sin(theta), tf.sin(theta), tf.cos(theta)],
                shape=(2, 2),
            )
            return tf.matmul(bbox, rotation_matrix)

        rotated_bboxes = _rotate(boxes, angle)
        res = ops._box_area(rotated_bboxes)
        self.assertAllClose(expected, res)

    def test_within_box3d(self):
        num_points, num_boxes = 19, 4
        # rotate the first box by pi / 2 so dim_x and dim_y are swapped.
        # The last box is a cube rotated by 45 degrees.
        bboxes = tf.constant(
            [
                [1.0, 2.0, 3.0, 6.0, 0.4, 6.0, np.pi / 2],
                [4.0, 5.0, 6.0, 7.0, 0.8, 7.0, 0.0],
                [0.4, 0.3, 0.2, 0.1, 0.1, 0.2, 0.0],
                [-10.0, -10.0, -10.0, 3.0, 3.0, 3.0, np.pi / 4],
            ],
            dtype=tf.float32,
        )
        points = tf.constant(
            [
                [1.0, 2.0, 3.0],  # box 0 (centroid)
                [0.8, 2.0, 3.0],  # box 0 (below x)
                [1.1, 2.0, 3.0],  # box 0 (above x)
                [1.3, 2.0, 3.0],  # box 0 (too far x)
                [0.7, 2.0, 3.0],  # box 0 (too far x)
                [4.0, 5.0, 6.0],  # box 1 (centroid)
                [4.0, 4.6, 6.0],  # box 1 (below y)
                [4.0, 5.4, 6.0],  # box 1 (above y)
                [4.0, 4.5, 6.0],  # box 1 (too far y)
                [4.0, 5.5, 6.0],  # box 1 (too far y)
                [0.4, 0.3, 0.2],  # box 2 (centroid)
                [0.4, 0.3, 0.1],  # box 2 (below z)
                [0.4, 0.3, 0.3],  # box 2 (above z)
                [0.4, 0.3, 0.0],  # box 2 (too far z)
                [0.4, 0.3, 0.4],  # box 2 (too far z)
                [5.0, 7.0, 8.0],  # none
                [1.0, 5.0, 3.6],  # box0, box1
                [-11.6, -10.0, -10.0],  # box3 (rotated corner point).
                [-11.4, -11.4, -10.0],  # not in box3, would be if not rotated.
            ],
            dtype=tf.float32,
        )
        expected_is_inside = np.array(
            [
                [True, False, False, False],
                [True, False, False, False],
                [True, False, False, False],
                [False, False, False, False],
                [False, False, False, False],
                [False, True, False, False],
                [False, True, False, False],
                [False, True, False, False],
                [False, False, False, False],
                [False, False, False, False],
                [False, False, True, False],
                [False, False, True, False],
                [False, False, True, False],
                [False, False, False, False],
                [False, False, False, False],
                [False, False, False, False],
                [True, True, False, False],
                [False, False, False, True],
                [False, False, False, False],
            ]
        )
        assert points.shape[0] == num_points
        assert bboxes.shape[0] == num_boxes
        assert expected_is_inside.shape[0] == num_points
        assert expected_is_inside.shape[1] == num_boxes
        is_inside = ops.is_within_box3d(points, bboxes)
        self.assertAllEqual([num_points, num_boxes], is_inside.shape)
        self.assertAllEqual(expected_is_inside, is_inside)
        # Add a batch dimension to the data and see that it still works
        # as expected.
        batch_size = 3
        points = tf.tile(points[tf.newaxis, ...], [batch_size, 1, 1])
        bboxes = tf.tile(bboxes[tf.newaxis, ...], [batch_size, 1, 1])
        is_inside = ops.is_within_box3d(points, bboxes)
        self.assertAllEqual([batch_size, num_points, num_boxes], is_inside.shape)
        for batch_idx in range(batch_size):
            self.assertAllEqual(expected_is_inside, is_inside[batch_idx])

    def testCoordinateTransform(self):
        # This is a validated test case from a real scene.
        #
        # A single point [1, 1, 3].
        point = tf.constant(
            [[[5736.94580078, 1264.85168457, 45.0271225]]], dtype=tf.float32
        )
        # Replicate the point to test broadcasting behavior.
        replicated_points = tf.tile(point, [2, 4, 1])

        # Pose of the car (x, y, z, yaw, roll, pitch).
        #
        # We negate the translations so that the coordinates are translated
        # such that the car is at the origin.
        pose = tf.constant(
            [
                -5728.77148438,
                -1264.42236328,
                -45.06399918,
                -3.10496902,
                0.03288471,
                0.00115049,
            ],
            dtype=tf.float32,
        )

        result = ops.coordinate_transform(replicated_points, pose)

        # We expect the point to be translated close to the car, and then rotated
        # mostly around the x-axis.
        # the result is device dependent, skip or ignore this test locally if it fails.
        expected = np.tile([[[-8.184512, -0.13086952, -0.04200769]]], [2, 4, 1])

        self.assertAllClose(expected, result)

    def testSphericalCoordinatesTransform(self):
        np_xyz = np.random.randn(5, 6, 3)
        points = tf.constant(np_xyz, dtype=tf.float32)
        spherical_coordinates = ops.spherical_coordinate_transform(points)

        # Convert coordinates back to xyz to verify.
        dist = spherical_coordinates[..., 0]
        theta = spherical_coordinates[..., 1]
        phi = spherical_coordinates[..., 2]

        x = dist * np.sin(theta) * np.cos(phi)
        y = dist * np.sin(theta) * np.sin(phi)
        z = dist * np.cos(theta)

        self.assertAllClose(x, np_xyz[..., 0])
        self.assertAllClose(y, np_xyz[..., 1])
        self.assertAllClose(z, np_xyz[..., 2])