densenet.py 10.9 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# Copyright 2022 The KerasCV Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""DenseNet models for KerasCV.

Reference:
  - [Densely Connected Convolutional Networks](https://arxiv.org/abs/1608.06993)
  - [Based on the Original keras.applications DenseNet](https://github.com/keras-team/keras/blob/master/keras/applications/densenet.py)
"""

from tensorflow import keras
from tensorflow.keras import backend
from tensorflow.keras import layers

from keras_cv.models import utils
from keras_cv.models.weights import parse_weights

BN_AXIS = 3

BASE_DOCSTRING = """Instantiates the {name} architecture.

    Reference:
        - [Densely Connected Convolutional Networks (CVPR 2017)](https://arxiv.org/abs/1608.06993)

    This function returns a Keras {name} model.

    For transfer learning use cases, make sure to read the [guide to transfer
        learning & fine-tuning](https://keras.io/guides/transfer_learning/).

    Args:
        include_rescaling: whether or not to Rescale the inputs.If set to True,
            inputs will be passed through a `Rescaling(1/255.0)` layer.
        include_top: whether to include the fully-connected layer at the top of the
            network.  If provided, classes must be provided.
        classes: optional number of classes to classify images into, only to be
            specified if `include_top` is True.
        weights: one of `None` (random initialization), a pretrained weight file
            path, or a reference to pre-trained weights (e.g. 'imagenet/classification')
            (see available pre-trained weights in weights.py)
        input_shape: optional shape tuple, defaults to (None, None, 3).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        pooling: optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be the 4D tensor output
                of the last convolutional block.
            - `avg` means that global average pooling will be applied to the output
                of the last convolutional block, and thus the output of the model will
                be a 2D tensor.
            - `max` means that global max pooling will be applied.
        name: (Optional) name to pass to the model.  Defaults to "{name}".

    Returns:
      A `keras.Model` instance.
"""


def DenseBlock(blocks, name=None):
    """A dense block.

    Args:
      blocks: integer, the number of building blocks.
      name: string, block label.

    Returns:
      a function that takes an input Tensor representing a DenseBlock.
    """
    if name is None:
        name = f"dense_block_{backend.get_uid('dense_block')}"

    def apply(x):
        for i in range(blocks):
            x = ConvBlock(32, name=f"{name}_block_{i}")(x)
        return x

    return apply


def TransitionBlock(reduction, name=None):
    """A transition block.

    Args:
      reduction: float, compression rate at transition layers.
      name: string, block label.

    Returns:
      a function that takes an input Tensor representing a TransitionBlock.
    """
    if name is None:
        name = f"transition_block_{backend.get_uid('transition_block')}"

    def apply(x):
        x = layers.BatchNormalization(
            axis=BN_AXIS, epsilon=1.001e-5, name=f"{name}_bn"
        )(x)
        x = layers.Activation("relu", name=f"{name}_relu")(x)
        x = layers.Conv2D(
            int(backend.int_shape(x)[BN_AXIS] * reduction),
            1,
            use_bias=False,
            name=f"{name}_conv",
        )(x)
        x = layers.AveragePooling2D(2, strides=2, name=f"{name}_pool")(x)
        return x

    return apply


def ConvBlock(growth_rate, name=None):
    """A building block for a dense block.

    Args:
      growth_rate: float, growth rate at dense layers.
      name: string, block label.

    Returns:
      a function that takes an input Tensor representing a ConvBlock.
    """
    if name is None:
        name = f"conv_block_{backend.get_uid('conv_block')}"

    def apply(x):
        x1 = layers.BatchNormalization(
            axis=BN_AXIS, epsilon=1.001e-5, name=f"{name}_0_bn"
        )(x)
        x1 = layers.Activation("relu", name=f"{name}_0_relu")(x1)
        x1 = layers.Conv2D(4 * growth_rate, 1, use_bias=False, name=f"{name}_1_conv")(
            x1
        )
        x1 = layers.BatchNormalization(
            axis=BN_AXIS, epsilon=1.001e-5, name=f"{name}_1_bn"
        )(x1)
        x1 = layers.Activation("relu", name=f"{name}_1_relu")(x1)
        x1 = layers.Conv2D(
            growth_rate, 3, padding="same", use_bias=False, name=f"{name}_2_conv"
        )(x1)
        x = layers.Concatenate(axis=BN_AXIS, name=f"{name}_concat")([x, x1])
        return x

    return apply


def DenseNet(
    blocks,
    include_rescaling,
    include_top,
    classes=None,
    weights=None,
    input_shape=(None, None, 3),
    input_tensor=None,
    pooling=None,
    classifier_activation="softmax",
    name="DenseNet",
    **kwargs,
):
    """Instantiates the DenseNet architecture.

    Reference:
        - [Densely Connected Convolutional Networks (CVPR 2017)](https://arxiv.org/abs/1608.06993)

    This function returns a Keras DenseNet model.

    For transfer learning use cases, make sure to read the [guide to transfer
        learning & fine-tuning](https://keras.io/guides/transfer_learning/).

    Args:
        blocks: numbers of building blocks for the four dense layers.
        include_rescaling: whether or not to Rescale the inputs.If set to True,
            inputs will be passed through a `Rescaling(1/255.0)` layer.
        include_top: whether to include the fully-connected layer at the top of the
            network.  If provided, classes must be provided.
        classes: optional number of classes to classify images into, only to be
            specified if `include_top` is True.
        weights: one of `None` (random initialization), or a pretrained weight file
            path.
        input_shape: optional shape tuple, defaults to (None, None, 3).
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        pooling: optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be the 4D tensor output
                of the last convolutional block.
            - `avg` means that global average pooling will be applied to the output
                of the last convolutional block, and thus the output of the model will
                be a 2D tensor.
            - `max` means that global max pooling will be applied.
        classifier_activation: A `str` or callable. The activation function to use
            on the "top" layer. Ignored unless `include_top=True`. Set
            `classifier_activation=None` to return the logits of the "top" layer.

        name: (Optional) name to pass to the model.  Defaults to "DenseNet".

    Returns:
      A `keras.Model` instance.
    """
    if include_top and not classes:
        raise ValueError(
            "If `include_top` is True, you should specify `classes`. "
            f"Received: classes={classes}"
        )

    inputs = utils.parse_model_inputs(input_shape, input_tensor)

    x = inputs
    if include_rescaling:
        x = layers.Rescaling(1 / 255.0)(x)

    x = layers.Conv2D(
        64, 7, strides=2, use_bias=False, padding="same", name="conv1/conv"
    )(x)
    x = layers.BatchNormalization(axis=BN_AXIS, epsilon=1.001e-5, name="conv1/bn")(x)
    x = layers.Activation("relu", name="conv1/relu")(x)
    x = layers.MaxPooling2D(3, strides=2, padding="same", name="pool1")(x)

    x = DenseBlock(blocks[0], name="conv2")(x)
    x = TransitionBlock(0.5, name="pool2")(x)
    x = DenseBlock(blocks[1], name="conv3")(x)
    x = TransitionBlock(0.5, name="pool3")(x)
    x = DenseBlock(blocks[2], name="conv4")(x)
    x = TransitionBlock(0.5, name="pool4")(x)
    x = DenseBlock(blocks[3], name="conv5")(x)

    x = layers.BatchNormalization(axis=BN_AXIS, epsilon=1.001e-5, name="bn")(x)
    x = layers.Activation("relu", name="relu")(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
        x = layers.Dense(classes, activation=classifier_activation, name="predictions")(
            x
        )
    elif pooling == "avg":
        x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
    elif pooling == "max":
        x = layers.GlobalMaxPooling2D(name="max_pool")(x)

    model = keras.Model(inputs, x, name=name, **kwargs)

    if weights is not None:
        model.load_weights(weights)
    return model


def DenseNet121(
    include_rescaling,
    include_top,
    classes=None,
    weights=None,
    input_shape=(None, None, 3),
    input_tensor=None,
    pooling=None,
    name="DenseNet121",
    **kwargs,
):
    return DenseNet(
        [6, 12, 24, 16],
        include_rescaling=include_rescaling,
        include_top=include_top,
        classes=classes,
        weights=parse_weights(weights, include_top, "densenet121"),
        input_shape=input_shape,
        input_tensor=input_tensor,
        pooling=pooling,
        name=name,
        **kwargs,
    )


def DenseNet169(
    include_rescaling,
    include_top,
    classes=None,
    weights=None,
    input_shape=(None, None, 3),
    input_tensor=None,
    pooling=None,
    name="DenseNet169",
    **kwargs,
):
    return DenseNet(
        [6, 12, 32, 32],
        include_rescaling=include_rescaling,
        include_top=include_top,
        classes=classes,
        weights=parse_weights(weights, include_top, "densenet169"),
        input_shape=input_shape,
        input_tensor=input_tensor,
        pooling=pooling,
        name=name,
        **kwargs,
    )


def DenseNet201(
    include_rescaling,
    include_top,
    classes=None,
    weights=None,
    input_shape=(None, None, 3),
    input_tensor=None,
    pooling=None,
    name="DenseNet201",
    **kwargs,
):
    return DenseNet(
        blocks=[6, 12, 48, 32],
        include_rescaling=include_rescaling,
        include_top=include_top,
        classes=classes,
        weights=parse_weights(weights, include_top, "densenet201"),
        input_shape=input_shape,
        input_tensor=input_tensor,
        pooling=pooling,
        name=name,
        **kwargs,
    )


setattr(DenseNet121, "__doc__", BASE_DOCSTRING.format(name="DenseNet121"))
setattr(DenseNet169, "__doc__", BASE_DOCSTRING.format(name="DenseNet169"))
setattr(DenseNet201, "__doc__", BASE_DOCSTRING.format(name="DenseNet201"))