Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
dadigang
Ventoy
Commits
32643ecd
Commit
32643ecd
authored
Nov 23, 2021
by
longpanda
Browse files
compress 7za.exe
parent
d2e59305
Changes
35
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
3869 additions
and
0 deletions
+3869
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_bcj.c
...p/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_bcj.c
+574
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_lzma2.c
...vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_lzma2.c
+1171
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_stream.c
...toyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_stream.c
+847
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_syms.c
.../vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_syms.c
+26
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_test.c
.../vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_test.c
+220
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_lzma2.h
...ump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_lzma2.h
+204
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_private.h
...p/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_private.h
+156
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_stream.h
...mp/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_stream.h
+62
-0
vtoyjump/vtoyjump/xz-embedded-20130513/linux/scripts/xz_wrap.sh
...mp/vtoyjump/xz-embedded-20130513/linux/scripts/xz_wrap.sh
+23
-0
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/Makefile
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/Makefile
+48
-0
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/boottest.c
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/boottest.c
+96
-0
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/buftest.c
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/buftest.c
+48
-0
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/bytetest.c
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/bytetest.c
+135
-0
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/xz_config.h
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/xz_config.h
+124
-0
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/xzminidec.c
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/xzminidec.c
+135
-0
No files found.
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_bcj.c
0 → 100644
View file @
32643ecd
/*
* Branch/Call/Jump (BCJ) filter decoders
*
* Authors: Lasse Collin <lasse.collin@tukaani.org>
* Igor Pavlov <http://7-zip.org/>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include "xz_private.h"
/*
* The rest of the file is inside this ifdef. It makes things a little more
* convenient when building without support for any BCJ filters.
*/
#ifdef XZ_DEC_BCJ
struct
xz_dec_bcj
{
/* Type of the BCJ filter being used */
enum
{
BCJ_X86
=
4
,
/* x86 or x86-64 */
BCJ_POWERPC
=
5
,
/* Big endian only */
BCJ_IA64
=
6
,
/* Big or little endian */
BCJ_ARM
=
7
,
/* Little endian only */
BCJ_ARMTHUMB
=
8
,
/* Little endian only */
BCJ_SPARC
=
9
/* Big or little endian */
}
type
;
/*
* Return value of the next filter in the chain. We need to preserve
* this information across calls, because we must not call the next
* filter anymore once it has returned XZ_STREAM_END.
*/
enum
xz_ret
ret
;
/* True if we are operating in single-call mode. */
bool
single_call
;
/*
* Absolute position relative to the beginning of the uncompressed
* data (in a single .xz Block). We care only about the lowest 32
* bits so this doesn't need to be uint64_t even with big files.
*/
uint32_t
pos
;
/* x86 filter state */
uint32_t
x86_prev_mask
;
/* Temporary space to hold the variables from struct xz_buf */
uint8_t
*
out
;
size_t
out_pos
;
size_t
out_size
;
struct
{
/* Amount of already filtered data in the beginning of buf */
size_t
filtered
;
/* Total amount of data currently stored in buf */
size_t
size
;
/*
* Buffer to hold a mix of filtered and unfiltered data. This
* needs to be big enough to hold Alignment + 2 * Look-ahead:
*
* Type Alignment Look-ahead
* x86 1 4
* PowerPC 4 0
* IA-64 16 0
* ARM 4 0
* ARM-Thumb 2 2
* SPARC 4 0
*/
uint8_t
buf
[
16
];
}
temp
;
};
#ifdef XZ_DEC_X86
/*
* This is used to test the most significant byte of a memory address
* in an x86 instruction.
*/
static
inline
int
bcj_x86_test_msbyte
(
uint8_t
b
)
{
return
b
==
0x00
||
b
==
0xFF
;
}
static
size_t
bcj_x86
(
struct
xz_dec_bcj
*
s
,
uint8_t
*
buf
,
size_t
size
)
{
static
const
bool
mask_to_allowed_status
[
8
]
=
{
true
,
true
,
true
,
false
,
true
,
false
,
false
,
false
};
static
const
uint8_t
mask_to_bit_num
[
8
]
=
{
0
,
1
,
2
,
2
,
3
,
3
,
3
,
3
};
size_t
i
;
size_t
prev_pos
=
(
size_t
)
-
1
;
uint32_t
prev_mask
=
s
->
x86_prev_mask
;
uint32_t
src
;
uint32_t
dest
;
uint32_t
j
;
uint8_t
b
;
if
(
size
<=
4
)
return
0
;
size
-=
4
;
for
(
i
=
0
;
i
<
size
;
++
i
)
{
if
((
buf
[
i
]
&
0xFE
)
!=
0xE8
)
continue
;
prev_pos
=
i
-
prev_pos
;
if
(
prev_pos
>
3
)
{
prev_mask
=
0
;
}
else
{
prev_mask
=
(
prev_mask
<<
(
prev_pos
-
1
))
&
7
;
if
(
prev_mask
!=
0
)
{
b
=
buf
[
i
+
4
-
mask_to_bit_num
[
prev_mask
]];
if
(
!
mask_to_allowed_status
[
prev_mask
]
||
bcj_x86_test_msbyte
(
b
))
{
prev_pos
=
i
;
prev_mask
=
(
prev_mask
<<
1
)
|
1
;
continue
;
}
}
}
prev_pos
=
i
;
if
(
bcj_x86_test_msbyte
(
buf
[
i
+
4
]))
{
src
=
get_unaligned_le32
(
buf
+
i
+
1
);
while
(
true
)
{
dest
=
src
-
(
s
->
pos
+
(
uint32_t
)
i
+
5
);
if
(
prev_mask
==
0
)
break
;
j
=
mask_to_bit_num
[
prev_mask
]
*
8
;
b
=
(
uint8_t
)(
dest
>>
(
24
-
j
));
if
(
!
bcj_x86_test_msbyte
(
b
))
break
;
src
=
dest
^
(((
uint32_t
)
1
<<
(
32
-
j
))
-
1
);
}
dest
&=
0x01FFFFFF
;
dest
|=
(
uint32_t
)
0
-
(
dest
&
0x01000000
);
put_unaligned_le32
(
dest
,
buf
+
i
+
1
);
i
+=
4
;
}
else
{
prev_mask
=
(
prev_mask
<<
1
)
|
1
;
}
}
prev_pos
=
i
-
prev_pos
;
s
->
x86_prev_mask
=
prev_pos
>
3
?
0
:
prev_mask
<<
(
prev_pos
-
1
);
return
i
;
}
#endif
#ifdef XZ_DEC_POWERPC
static
size_t
bcj_powerpc
(
struct
xz_dec_bcj
*
s
,
uint8_t
*
buf
,
size_t
size
)
{
size_t
i
;
uint32_t
instr
;
for
(
i
=
0
;
i
+
4
<=
size
;
i
+=
4
)
{
instr
=
get_unaligned_be32
(
buf
+
i
);
if
((
instr
&
0xFC000003
)
==
0x48000001
)
{
instr
&=
0x03FFFFFC
;
instr
-=
s
->
pos
+
(
uint32_t
)
i
;
instr
&=
0x03FFFFFC
;
instr
|=
0x48000001
;
put_unaligned_be32
(
instr
,
buf
+
i
);
}
}
return
i
;
}
#endif
#ifdef XZ_DEC_IA64
static
size_t
bcj_ia64
(
struct
xz_dec_bcj
*
s
,
uint8_t
*
buf
,
size_t
size
)
{
static
const
uint8_t
branch_table
[
32
]
=
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
4
,
4
,
6
,
6
,
0
,
0
,
7
,
7
,
4
,
4
,
0
,
0
,
4
,
4
,
0
,
0
};
/*
* The local variables take a little bit stack space, but it's less
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
* stack usage here without doing that for the LZMA2 decoder too.
*/
/* Loop counters */
size_t
i
;
size_t
j
;
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
uint32_t
slot
;
/* Bitwise offset of the instruction indicated by slot */
uint32_t
bit_pos
;
/* bit_pos split into byte and bit parts */
uint32_t
byte_pos
;
uint32_t
bit_res
;
/* Address part of an instruction */
uint32_t
addr
;
/* Mask used to detect which instructions to convert */
uint32_t
mask
;
/* 41-bit instruction stored somewhere in the lowest 48 bits */
uint64_t
instr
;
/* Instruction normalized with bit_res for easier manipulation */
uint64_t
norm
;
for
(
i
=
0
;
i
+
16
<=
size
;
i
+=
16
)
{
mask
=
branch_table
[
buf
[
i
]
&
0x1F
];
for
(
slot
=
0
,
bit_pos
=
5
;
slot
<
3
;
++
slot
,
bit_pos
+=
41
)
{
if
(((
mask
>>
slot
)
&
1
)
==
0
)
continue
;
byte_pos
=
bit_pos
>>
3
;
bit_res
=
bit_pos
&
7
;
instr
=
0
;
for
(
j
=
0
;
j
<
6
;
++
j
)
instr
|=
(
uint64_t
)(
buf
[
i
+
j
+
byte_pos
])
<<
(
8
*
j
);
norm
=
instr
>>
bit_res
;
if
(((
norm
>>
37
)
&
0x0F
)
==
0x05
&&
((
norm
>>
9
)
&
0x07
)
==
0
)
{
addr
=
(
norm
>>
13
)
&
0x0FFFFF
;
addr
|=
((
uint32_t
)(
norm
>>
36
)
&
1
)
<<
20
;
addr
<<=
4
;
addr
-=
s
->
pos
+
(
uint32_t
)
i
;
addr
>>=
4
;
norm
&=
~
((
uint64_t
)
0x8FFFFF
<<
13
);
norm
|=
(
uint64_t
)(
addr
&
0x0FFFFF
)
<<
13
;
norm
|=
(
uint64_t
)(
addr
&
0x100000
)
<<
(
36
-
20
);
instr
&=
(
1
<<
bit_res
)
-
1
;
instr
|=
norm
<<
bit_res
;
for
(
j
=
0
;
j
<
6
;
j
++
)
buf
[
i
+
j
+
byte_pos
]
=
(
uint8_t
)(
instr
>>
(
8
*
j
));
}
}
}
return
i
;
}
#endif
#ifdef XZ_DEC_ARM
static
size_t
bcj_arm
(
struct
xz_dec_bcj
*
s
,
uint8_t
*
buf
,
size_t
size
)
{
size_t
i
;
uint32_t
addr
;
for
(
i
=
0
;
i
+
4
<=
size
;
i
+=
4
)
{
if
(
buf
[
i
+
3
]
==
0xEB
)
{
addr
=
(
uint32_t
)
buf
[
i
]
|
((
uint32_t
)
buf
[
i
+
1
]
<<
8
)
|
((
uint32_t
)
buf
[
i
+
2
]
<<
16
);
addr
<<=
2
;
addr
-=
s
->
pos
+
(
uint32_t
)
i
+
8
;
addr
>>=
2
;
buf
[
i
]
=
(
uint8_t
)
addr
;
buf
[
i
+
1
]
=
(
uint8_t
)(
addr
>>
8
);
buf
[
i
+
2
]
=
(
uint8_t
)(
addr
>>
16
);
}
}
return
i
;
}
#endif
#ifdef XZ_DEC_ARMTHUMB
static
size_t
bcj_armthumb
(
struct
xz_dec_bcj
*
s
,
uint8_t
*
buf
,
size_t
size
)
{
size_t
i
;
uint32_t
addr
;
for
(
i
=
0
;
i
+
4
<=
size
;
i
+=
2
)
{
if
((
buf
[
i
+
1
]
&
0xF8
)
==
0xF0
&&
(
buf
[
i
+
3
]
&
0xF8
)
==
0xF8
)
{
addr
=
(((
uint32_t
)
buf
[
i
+
1
]
&
0x07
)
<<
19
)
|
((
uint32_t
)
buf
[
i
]
<<
11
)
|
(((
uint32_t
)
buf
[
i
+
3
]
&
0x07
)
<<
8
)
|
(
uint32_t
)
buf
[
i
+
2
];
addr
<<=
1
;
addr
-=
s
->
pos
+
(
uint32_t
)
i
+
4
;
addr
>>=
1
;
buf
[
i
+
1
]
=
(
uint8_t
)(
0xF0
|
((
addr
>>
19
)
&
0x07
));
buf
[
i
]
=
(
uint8_t
)(
addr
>>
11
);
buf
[
i
+
3
]
=
(
uint8_t
)(
0xF8
|
((
addr
>>
8
)
&
0x07
));
buf
[
i
+
2
]
=
(
uint8_t
)
addr
;
i
+=
2
;
}
}
return
i
;
}
#endif
#ifdef XZ_DEC_SPARC
static
size_t
bcj_sparc
(
struct
xz_dec_bcj
*
s
,
uint8_t
*
buf
,
size_t
size
)
{
size_t
i
;
uint32_t
instr
;
for
(
i
=
0
;
i
+
4
<=
size
;
i
+=
4
)
{
instr
=
get_unaligned_be32
(
buf
+
i
);
if
((
instr
>>
22
)
==
0x100
||
(
instr
>>
22
)
==
0x1FF
)
{
instr
<<=
2
;
instr
-=
s
->
pos
+
(
uint32_t
)
i
;
instr
>>=
2
;
instr
=
((
uint32_t
)
0x40000000
-
(
instr
&
0x400000
))
|
0x40000000
|
(
instr
&
0x3FFFFF
);
put_unaligned_be32
(
instr
,
buf
+
i
);
}
}
return
i
;
}
#endif
/*
* Apply the selected BCJ filter. Update *pos and s->pos to match the amount
* of data that got filtered.
*
* NOTE: This is implemented as a switch statement to avoid using function
* pointers, which could be problematic in the kernel boot code, which must
* avoid pointers to static data (at least on x86).
*/
static
void
bcj_apply
(
struct
xz_dec_bcj
*
s
,
uint8_t
*
buf
,
size_t
*
pos
,
size_t
size
)
{
size_t
filtered
;
buf
+=
*
pos
;
size
-=
*
pos
;
switch
(
s
->
type
)
{
#ifdef XZ_DEC_X86
case
BCJ_X86
:
filtered
=
bcj_x86
(
s
,
buf
,
size
);
break
;
#endif
#ifdef XZ_DEC_POWERPC
case
BCJ_POWERPC
:
filtered
=
bcj_powerpc
(
s
,
buf
,
size
);
break
;
#endif
#ifdef XZ_DEC_IA64
case
BCJ_IA64
:
filtered
=
bcj_ia64
(
s
,
buf
,
size
);
break
;
#endif
#ifdef XZ_DEC_ARM
case
BCJ_ARM
:
filtered
=
bcj_arm
(
s
,
buf
,
size
);
break
;
#endif
#ifdef XZ_DEC_ARMTHUMB
case
BCJ_ARMTHUMB
:
filtered
=
bcj_armthumb
(
s
,
buf
,
size
);
break
;
#endif
#ifdef XZ_DEC_SPARC
case
BCJ_SPARC
:
filtered
=
bcj_sparc
(
s
,
buf
,
size
);
break
;
#endif
default:
/* Never reached but silence compiler warnings. */
filtered
=
0
;
break
;
}
*
pos
+=
filtered
;
s
->
pos
+=
filtered
;
}
/*
* Flush pending filtered data from temp to the output buffer.
* Move the remaining mixture of possibly filtered and unfiltered
* data to the beginning of temp.
*/
static
void
bcj_flush
(
struct
xz_dec_bcj
*
s
,
struct
xz_buf
*
b
)
{
size_t
copy_size
;
copy_size
=
min_t
(
size_t
,
s
->
temp
.
filtered
,
b
->
out_size
-
b
->
out_pos
);
memcpy
(
b
->
out
+
b
->
out_pos
,
s
->
temp
.
buf
,
copy_size
);
b
->
out_pos
+=
copy_size
;
s
->
temp
.
filtered
-=
copy_size
;
s
->
temp
.
size
-=
copy_size
;
memmove
(
s
->
temp
.
buf
,
s
->
temp
.
buf
+
copy_size
,
s
->
temp
.
size
);
}
/*
* The BCJ filter functions are primitive in sense that they process the
* data in chunks of 1-16 bytes. To hide this issue, this function does
* some buffering.
*/
XZ_EXTERN
enum
xz_ret
xz_dec_bcj_run
(
struct
xz_dec_bcj
*
s
,
struct
xz_dec_lzma2
*
lzma2
,
struct
xz_buf
*
b
)
{
size_t
out_start
;
/*
* Flush pending already filtered data to the output buffer. Return
* immediatelly if we couldn't flush everything, or if the next
* filter in the chain had already returned XZ_STREAM_END.
*/
if
(
s
->
temp
.
filtered
>
0
)
{
bcj_flush
(
s
,
b
);
if
(
s
->
temp
.
filtered
>
0
)
return
XZ_OK
;
if
(
s
->
ret
==
XZ_STREAM_END
)
return
XZ_STREAM_END
;
}
/*
* If we have more output space than what is currently pending in
* temp, copy the unfiltered data from temp to the output buffer
* and try to fill the output buffer by decoding more data from the
* next filter in the chain. Apply the BCJ filter on the new data
* in the output buffer. If everything cannot be filtered, copy it
* to temp and rewind the output buffer position accordingly.
*
* This needs to be always run when temp.size == 0 to handle a special
* case where the output buffer is full and the next filter has no
* more output coming but hasn't returned XZ_STREAM_END yet.
*/
if
(
s
->
temp
.
size
<
b
->
out_size
-
b
->
out_pos
||
s
->
temp
.
size
==
0
)
{
out_start
=
b
->
out_pos
;
memcpy
(
b
->
out
+
b
->
out_pos
,
s
->
temp
.
buf
,
s
->
temp
.
size
);
b
->
out_pos
+=
s
->
temp
.
size
;
s
->
ret
=
xz_dec_lzma2_run
(
lzma2
,
b
);
if
(
s
->
ret
!=
XZ_STREAM_END
&&
(
s
->
ret
!=
XZ_OK
||
s
->
single_call
))
return
s
->
ret
;
bcj_apply
(
s
,
b
->
out
,
&
out_start
,
b
->
out_pos
);
/*
* As an exception, if the next filter returned XZ_STREAM_END,
* we can do that too, since the last few bytes that remain
* unfiltered are meant to remain unfiltered.
*/
if
(
s
->
ret
==
XZ_STREAM_END
)
return
XZ_STREAM_END
;
s
->
temp
.
size
=
b
->
out_pos
-
out_start
;
b
->
out_pos
-=
s
->
temp
.
size
;
memcpy
(
s
->
temp
.
buf
,
b
->
out
+
b
->
out_pos
,
s
->
temp
.
size
);
/*
* If there wasn't enough input to the next filter to fill
* the output buffer with unfiltered data, there's no point
* to try decoding more data to temp.
*/
if
(
b
->
out_pos
+
s
->
temp
.
size
<
b
->
out_size
)
return
XZ_OK
;
}
/*
* We have unfiltered data in temp. If the output buffer isn't full
* yet, try to fill the temp buffer by decoding more data from the
* next filter. Apply the BCJ filter on temp. Then we hopefully can
* fill the actual output buffer by copying filtered data from temp.
* A mix of filtered and unfiltered data may be left in temp; it will
* be taken care on the next call to this function.
*/
if
(
b
->
out_pos
<
b
->
out_size
)
{
/* Make b->out{,_pos,_size} temporarily point to s->temp. */
s
->
out
=
b
->
out
;
s
->
out_pos
=
b
->
out_pos
;
s
->
out_size
=
b
->
out_size
;
b
->
out
=
s
->
temp
.
buf
;
b
->
out_pos
=
s
->
temp
.
size
;
b
->
out_size
=
sizeof
(
s
->
temp
.
buf
);
s
->
ret
=
xz_dec_lzma2_run
(
lzma2
,
b
);
s
->
temp
.
size
=
b
->
out_pos
;
b
->
out
=
s
->
out
;
b
->
out_pos
=
s
->
out_pos
;
b
->
out_size
=
s
->
out_size
;
if
(
s
->
ret
!=
XZ_OK
&&
s
->
ret
!=
XZ_STREAM_END
)
return
s
->
ret
;
bcj_apply
(
s
,
s
->
temp
.
buf
,
&
s
->
temp
.
filtered
,
s
->
temp
.
size
);
/*
* If the next filter returned XZ_STREAM_END, we mark that
* everything is filtered, since the last unfiltered bytes
* of the stream are meant to be left as is.
*/
if
(
s
->
ret
==
XZ_STREAM_END
)
s
->
temp
.
filtered
=
s
->
temp
.
size
;
bcj_flush
(
s
,
b
);
if
(
s
->
temp
.
filtered
>
0
)
return
XZ_OK
;
}
return
s
->
ret
;
}
XZ_EXTERN
struct
xz_dec_bcj
*
xz_dec_bcj_create
(
bool
single_call
)
{
struct
xz_dec_bcj
*
s
=
kmalloc
(
sizeof
(
*
s
),
GFP_KERNEL
);
if
(
s
!=
NULL
)
s
->
single_call
=
single_call
;
return
s
;
}
XZ_EXTERN
enum
xz_ret
xz_dec_bcj_reset
(
struct
xz_dec_bcj
*
s
,
uint8_t
id
)
{
switch
(
id
)
{
#ifdef XZ_DEC_X86
case
BCJ_X86
:
#endif
#ifdef XZ_DEC_POWERPC
case
BCJ_POWERPC
:
#endif
#ifdef XZ_DEC_IA64
case
BCJ_IA64
:
#endif
#ifdef XZ_DEC_ARM
case
BCJ_ARM
:
#endif
#ifdef XZ_DEC_ARMTHUMB
case
BCJ_ARMTHUMB
:
#endif
#ifdef XZ_DEC_SPARC
case
BCJ_SPARC
:
#endif
break
;
default:
/* Unsupported Filter ID */
return
XZ_OPTIONS_ERROR
;
}
s
->
type
=
id
;
s
->
ret
=
XZ_OK
;
s
->
pos
=
0
;
s
->
x86_prev_mask
=
0
;
s
->
temp
.
filtered
=
0
;
s
->
temp
.
size
=
0
;
return
XZ_OK
;
}
#endif
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_lzma2.c
0 → 100644
View file @
32643ecd
This diff is collapsed.
Click to expand it.
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_stream.c
0 → 100644
View file @
32643ecd
This diff is collapsed.
Click to expand it.
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_syms.c
0 → 100644
View file @
32643ecd
/*
* XZ decoder module information
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include <linux/module.h>
#include <linux/xz.h>
EXPORT_SYMBOL
(
xz_dec_init
);
EXPORT_SYMBOL
(
xz_dec_reset
);
EXPORT_SYMBOL
(
xz_dec_run
);
EXPORT_SYMBOL
(
xz_dec_end
);
MODULE_DESCRIPTION
(
"XZ decompressor"
);
MODULE_VERSION
(
"1.0"
);
MODULE_AUTHOR
(
"Lasse Collin <lasse.collin@tukaani.org> and Igor Pavlov"
);
/*
* This code is in the public domain, but in Linux it's simplest to just
* say it's GPL and consider the authors as the copyright holders.
*/
MODULE_LICENSE
(
"GPL"
);
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_dec_test.c
0 → 100644
View file @
32643ecd
/*
* XZ decoder tester
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/crc32.h>
#include <linux/xz.h>
/* Maximum supported dictionary size */
#define DICT_MAX (1 << 20)
/* Device name to pass to register_chrdev(). */
#define DEVICE_NAME "xz_dec_test"
/* Dynamically allocated device major number */
static
int
device_major
;
/*
* We reuse the same decoder state, and thus can decode only one
* file at a time.
*/
static
bool
device_is_open
;
/* XZ decoder state */
static
struct
xz_dec
*
state
;
/*
* Return value of xz_dec_run(). We need to avoid calling xz_dec_run() after
* it has returned XZ_STREAM_END, so we make this static.
*/
static
enum
xz_ret
ret
;
/*
* Input and output buffers. The input buffer is used as a temporary safe
* place for the data coming from the userspace.
*/
static
uint8_t
buffer_in
[
1024
];
static
uint8_t
buffer_out
[
1024
];
/*
* Structure to pass the input and output buffers to the XZ decoder.
* A few of the fields are never modified so we initialize them here.
*/
static
struct
xz_buf
buffers
=
{
.
in
=
buffer_in
,
.
out
=
buffer_out
,
.
out_size
=
sizeof
(
buffer_out
)
};
/*
* CRC32 of uncompressed data. This is used to give the user a simple way
* to check that the decoder produces correct output.
*/
static
uint32_t
crc
;
static
int
xz_dec_test_open
(
struct
inode
*
i
,
struct
file
*
f
)
{
if
(
device_is_open
)
return
-
EBUSY
;
device_is_open
=
true
;
xz_dec_reset
(
state
);
ret
=
XZ_OK
;
crc
=
0xFFFFFFFF
;
buffers
.
in_pos
=
0
;
buffers
.
in_size
=
0
;
buffers
.
out_pos
=
0
;
printk
(
KERN_INFO
DEVICE_NAME
": opened
\n
"
);
return
0
;
}
static
int
xz_dec_test_release
(
struct
inode
*
i
,
struct
file
*
f
)
{
device_is_open
=
false
;
if
(
ret
==
XZ_OK
)
printk
(
KERN_INFO
DEVICE_NAME
": input was truncated
\n
"
);
printk
(
KERN_INFO
DEVICE_NAME
": closed
\n
"
);
return
0
;
}
/*
* Decode the data given to us from the userspace. CRC32 of the uncompressed
* data is calculated and is printed at the end of successful decoding. The
* uncompressed data isn't stored anywhere for further use.
*
* The .xz file must have exactly one Stream and no Stream Padding. The data
* after the first Stream is considered to be garbage.
*/
static
ssize_t
xz_dec_test_write
(
struct
file
*
file
,
const
char
__user
*
buf
,
size_t
size
,
loff_t
*
pos
)
{
size_t
remaining
;
if
(
ret
!=
XZ_OK
)
{
if
(
size
>
0
)
printk
(
KERN_INFO
DEVICE_NAME
": %zu bytes of "
"garbage at the end of the file
\n
"
,
size
);
return
-
ENOSPC
;
}
printk
(
KERN_INFO
DEVICE_NAME
": decoding %zu bytes of input
\n
"
,
size
);
remaining
=
size
;
while
((
remaining
>
0
||
buffers
.
out_pos
==
buffers
.
out_size
)
&&
ret
==
XZ_OK
)
{
if
(
buffers
.
in_pos
==
buffers
.
in_size
)
{
buffers
.
in_pos
=
0
;
buffers
.
in_size
=
min
(
remaining
,
sizeof
(
buffer_in
));
if
(
copy_from_user
(
buffer_in
,
buf
,
buffers
.
in_size
))
return
-
EFAULT
;
buf
+=
buffers
.
in_size
;
remaining
-=
buffers
.
in_size
;
}
buffers
.
out_pos
=
0
;
ret
=
xz_dec_run
(
state
,
&
buffers
);
crc
=
crc32
(
crc
,
buffer_out
,
buffers
.
out_pos
);
}
switch
(
ret
)
{
case
XZ_OK
:
printk
(
KERN_INFO
DEVICE_NAME
": XZ_OK
\n
"
);
return
size
;
case
XZ_STREAM_END
:
printk
(
KERN_INFO
DEVICE_NAME
": XZ_STREAM_END, "
"CRC32 = 0x%08X
\n
"
,
~
crc
);
return
size
-
remaining
-
(
buffers
.
in_size
-
buffers
.
in_pos
);
case
XZ_MEMLIMIT_ERROR
:
printk
(
KERN_INFO
DEVICE_NAME
": XZ_MEMLIMIT_ERROR
\n
"
);
break
;
case
XZ_FORMAT_ERROR
:
printk
(
KERN_INFO
DEVICE_NAME
": XZ_FORMAT_ERROR
\n
"
);
break
;
case
XZ_OPTIONS_ERROR
:
printk
(
KERN_INFO
DEVICE_NAME
": XZ_OPTIONS_ERROR
\n
"
);
break
;
case
XZ_DATA_ERROR
:
printk
(
KERN_INFO
DEVICE_NAME
": XZ_DATA_ERROR
\n
"
);
break
;
case
XZ_BUF_ERROR
:
printk
(
KERN_INFO
DEVICE_NAME
": XZ_BUF_ERROR
\n
"
);
break
;
default:
printk
(
KERN_INFO
DEVICE_NAME
": Bug detected!
\n
"
);
break
;
}
return
-
EIO
;
}
/* Allocate the XZ decoder state and register the character device. */
static
int
__init
xz_dec_test_init
(
void
)
{
static
const
struct
file_operations
fileops
=
{
.
owner
=
THIS_MODULE
,
.
open
=
&
xz_dec_test_open
,
.
release
=
&
xz_dec_test_release
,
.
write
=
&
xz_dec_test_write
};
state
=
xz_dec_init
(
XZ_PREALLOC
,
DICT_MAX
);
if
(
state
==
NULL
)
return
-
ENOMEM
;
device_major
=
register_chrdev
(
0
,
DEVICE_NAME
,
&
fileops
);
if
(
device_major
<
0
)
{
xz_dec_end
(
state
);
return
device_major
;
}
printk
(
KERN_INFO
DEVICE_NAME
": module loaded
\n
"
);
printk
(
KERN_INFO
DEVICE_NAME
": Create a device node with "
"'mknod "
DEVICE_NAME
" c %d 0' and write .xz files "
"to it.
\n
"
,
device_major
);
return
0
;
}
static
void
__exit
xz_dec_test_exit
(
void
)
{
unregister_chrdev
(
device_major
,
DEVICE_NAME
);
xz_dec_end
(
state
);
printk
(
KERN_INFO
DEVICE_NAME
": module unloaded
\n
"
);
}
module_init
(
xz_dec_test_init
);
module_exit
(
xz_dec_test_exit
);
MODULE_DESCRIPTION
(
"XZ decompressor tester"
);
MODULE_VERSION
(
"1.0"
);
MODULE_AUTHOR
(
"Lasse Collin <lasse.collin@tukaani.org>"
);
/*
* This code is in the public domain, but in Linux it's simplest to just
* say it's GPL and consider the authors as the copyright holders.
*/
MODULE_LICENSE
(
"GPL"
);
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_lzma2.h
0 → 100644
View file @
32643ecd
/*
* LZMA2 definitions
*
* Authors: Lasse Collin <lasse.collin@tukaani.org>
* Igor Pavlov <http://7-zip.org/>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_LZMA2_H
#define XZ_LZMA2_H
/* Range coder constants */
#define RC_SHIFT_BITS 8
#define RC_TOP_BITS 24
#define RC_TOP_VALUE (1 << RC_TOP_BITS)
#define RC_BIT_MODEL_TOTAL_BITS 11
#define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS)
#define RC_MOVE_BITS 5
/*
* Maximum number of position states. A position state is the lowest pb
* number of bits of the current uncompressed offset. In some places there
* are different sets of probabilities for different position states.
*/
#define POS_STATES_MAX (1 << 4)
/*
* This enum is used to track which LZMA symbols have occurred most recently
* and in which order. This information is used to predict the next symbol.
*
* Symbols:
* - Literal: One 8-bit byte
* - Match: Repeat a chunk of data at some distance
* - Long repeat: Multi-byte match at a recently seen distance
* - Short repeat: One-byte repeat at a recently seen distance
*
* The symbol names are in from STATE_oldest_older_previous. REP means
* either short or long repeated match, and NONLIT means any non-literal.
*/
enum
lzma_state
{
STATE_LIT_LIT
,
STATE_MATCH_LIT_LIT
,
STATE_REP_LIT_LIT
,
STATE_SHORTREP_LIT_LIT
,
STATE_MATCH_LIT
,
STATE_REP_LIT
,
STATE_SHORTREP_LIT
,
STATE_LIT_MATCH
,
STATE_LIT_LONGREP
,
STATE_LIT_SHORTREP
,
STATE_NONLIT_MATCH
,
STATE_NONLIT_REP
};
/* Total number of states */
#define STATES 12
/* The lowest 7 states indicate that the previous state was a literal. */
#define LIT_STATES 7
/* Indicate that the latest symbol was a literal. */
static
inline
void
lzma_state_literal
(
enum
lzma_state
*
state
)
{
if
(
*
state
<=
STATE_SHORTREP_LIT_LIT
)
*
state
=
STATE_LIT_LIT
;
else
if
(
*
state
<=
STATE_LIT_SHORTREP
)
*
state
-=
3
;
else
*
state
-=
6
;
}
/* Indicate that the latest symbol was a match. */
static
inline
void
lzma_state_match
(
enum
lzma_state
*
state
)
{
*
state
=
*
state
<
LIT_STATES
?
STATE_LIT_MATCH
:
STATE_NONLIT_MATCH
;
}
/* Indicate that the latest state was a long repeated match. */
static
inline
void
lzma_state_long_rep
(
enum
lzma_state
*
state
)
{
*
state
=
*
state
<
LIT_STATES
?
STATE_LIT_LONGREP
:
STATE_NONLIT_REP
;
}
/* Indicate that the latest symbol was a short match. */
static
inline
void
lzma_state_short_rep
(
enum
lzma_state
*
state
)
{
*
state
=
*
state
<
LIT_STATES
?
STATE_LIT_SHORTREP
:
STATE_NONLIT_REP
;
}
/* Test if the previous symbol was a literal. */
static
inline
bool
lzma_state_is_literal
(
enum
lzma_state
state
)
{
return
state
<
LIT_STATES
;
}
/* Each literal coder is divided in three sections:
* - 0x001-0x0FF: Without match byte
* - 0x101-0x1FF: With match byte; match bit is 0
* - 0x201-0x2FF: With match byte; match bit is 1
*
* Match byte is used when the previous LZMA symbol was something else than
* a literal (that is, it was some kind of match).
*/
#define LITERAL_CODER_SIZE 0x300
/* Maximum number of literal coders */
#define LITERAL_CODERS_MAX (1 << 4)
/* Minimum length of a match is two bytes. */
#define MATCH_LEN_MIN 2
/* Match length is encoded with 4, 5, or 10 bits.
*
* Length Bits
* 2-9 4 = Choice=0 + 3 bits
* 10-17 5 = Choice=1 + Choice2=0 + 3 bits
* 18-273 10 = Choice=1 + Choice2=1 + 8 bits
*/
#define LEN_LOW_BITS 3
#define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS)
#define LEN_MID_BITS 3
#define LEN_MID_SYMBOLS (1 << LEN_MID_BITS)
#define LEN_HIGH_BITS 8
#define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS)
#define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS)
/*
* Maximum length of a match is 273 which is a result of the encoding
* described above.
*/
#define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1)
/*
* Different sets of probabilities are used for match distances that have
* very short match length: Lengths of 2, 3, and 4 bytes have a separate
* set of probabilities for each length. The matches with longer length
* use a shared set of probabilities.
*/
#define DIST_STATES 4
/*
* Get the index of the appropriate probability array for decoding
* the distance slot.
*/
static
inline
uint32_t
lzma_get_dist_state
(
uint32_t
len
)
{
return
len
<
DIST_STATES
+
MATCH_LEN_MIN
?
len
-
MATCH_LEN_MIN
:
DIST_STATES
-
1
;
}
/*
* The highest two bits of a 32-bit match distance are encoded using six bits.
* This six-bit value is called a distance slot. This way encoding a 32-bit
* value takes 6-36 bits, larger values taking more bits.
*/
#define DIST_SLOT_BITS 6
#define DIST_SLOTS (1 << DIST_SLOT_BITS)
/* Match distances up to 127 are fully encoded using probabilities. Since
* the highest two bits (distance slot) are always encoded using six bits,
* the distances 0-3 don't need any additional bits to encode, since the
* distance slot itself is the same as the actual distance. DIST_MODEL_START
* indicates the first distance slot where at least one additional bit is
* needed.
*/
#define DIST_MODEL_START 4
/*
* Match distances greater than 127 are encoded in three pieces:
* - distance slot: the highest two bits
* - direct bits: 2-26 bits below the highest two bits
* - alignment bits: four lowest bits
*
* Direct bits don't use any probabilities.
*
* The distance slot value of 14 is for distances 128-191.
*/
#define DIST_MODEL_END 14
/* Distance slots that indicate a distance <= 127. */
#define FULL_DISTANCES_BITS (DIST_MODEL_END / 2)
#define FULL_DISTANCES (1 << FULL_DISTANCES_BITS)
/*
* For match distances greater than 127, only the highest two bits and the
* lowest four bits (alignment) is encoded using probabilities.
*/
#define ALIGN_BITS 4
#define ALIGN_SIZE (1 << ALIGN_BITS)
#define ALIGN_MASK (ALIGN_SIZE - 1)
/* Total number of all probability variables */
#define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE)
/*
* LZMA remembers the four most recent match distances. Reusing these
* distances tends to take less space than re-encoding the actual
* distance value.
*/
#define REPS 4
#endif
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_private.h
0 → 100644
View file @
32643ecd
/*
* Private includes and definitions
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_PRIVATE_H
#define XZ_PRIVATE_H
#ifdef __KERNEL__
# include <linux/xz.h>
# include <linux/kernel.h>
# include <asm/unaligned.h>
/* XZ_PREBOOT may be defined only via decompress_unxz.c. */
# ifndef XZ_PREBOOT
# include <linux/slab.h>
# include <linux/vmalloc.h>
# include <linux/string.h>
# ifdef CONFIG_XZ_DEC_X86
# define XZ_DEC_X86
# endif
# ifdef CONFIG_XZ_DEC_POWERPC
# define XZ_DEC_POWERPC
# endif
# ifdef CONFIG_XZ_DEC_IA64
# define XZ_DEC_IA64
# endif
# ifdef CONFIG_XZ_DEC_ARM
# define XZ_DEC_ARM
# endif
# ifdef CONFIG_XZ_DEC_ARMTHUMB
# define XZ_DEC_ARMTHUMB
# endif
# ifdef CONFIG_XZ_DEC_SPARC
# define XZ_DEC_SPARC
# endif
# define memeq(a, b, size) (memcmp(a, b, size) == 0)
# define memzero(buf, size) memset(buf, 0, size)
# endif
# define get_le32(p) le32_to_cpup((const uint32_t *)(p))
#else
/*
* For userspace builds, use a separate header to define the required
* macros and functions. This makes it easier to adapt the code into
* different environments and avoids clutter in the Linux kernel tree.
*/
# include "xz_config.h"
#endif
/* If no specific decoding mode is requested, enable support for all modes. */
#if !defined(XZ_DEC_SINGLE) && !defined(XZ_DEC_PREALLOC) \
&& !defined(XZ_DEC_DYNALLOC)
# define XZ_DEC_SINGLE
# define XZ_DEC_PREALLOC
# define XZ_DEC_DYNALLOC
#endif
/*
* The DEC_IS_foo(mode) macros are used in "if" statements. If only some
* of the supported modes are enabled, these macros will evaluate to true or
* false at compile time and thus allow the compiler to omit unneeded code.
*/
#ifdef XZ_DEC_SINGLE
# define DEC_IS_SINGLE(mode) ((mode) == XZ_SINGLE)
#else
# define DEC_IS_SINGLE(mode) (false)
#endif
#ifdef XZ_DEC_PREALLOC
# define DEC_IS_PREALLOC(mode) ((mode) == XZ_PREALLOC)
#else
# define DEC_IS_PREALLOC(mode) (false)
#endif
#ifdef XZ_DEC_DYNALLOC
# define DEC_IS_DYNALLOC(mode) ((mode) == XZ_DYNALLOC)
#else
# define DEC_IS_DYNALLOC(mode) (false)
#endif
#if !defined(XZ_DEC_SINGLE)
# define DEC_IS_MULTI(mode) (true)
#elif defined(XZ_DEC_PREALLOC) || defined(XZ_DEC_DYNALLOC)
# define DEC_IS_MULTI(mode) ((mode) != XZ_SINGLE)
#else
# define DEC_IS_MULTI(mode) (false)
#endif
/*
* If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ.
* XZ_DEC_BCJ is used to enable generic support for BCJ decoders.
*/
#ifndef XZ_DEC_BCJ
# if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \
|| defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \
|| defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \
|| defined(XZ_DEC_SPARC)
# define XZ_DEC_BCJ
# endif
#endif
/*
* Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used
* before calling xz_dec_lzma2_run().
*/
XZ_EXTERN
struct
xz_dec_lzma2
*
xz_dec_lzma2_create
(
enum
xz_mode
mode
,
uint32_t
dict_max
);
/*
* Decode the LZMA2 properties (one byte) and reset the decoder. Return
* XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not
* big enough, and XZ_OPTIONS_ERROR if props indicates something that this
* decoder doesn't support.
*/
XZ_EXTERN
enum
xz_ret
xz_dec_lzma2_reset
(
struct
xz_dec_lzma2
*
s
,
uint8_t
props
);
/* Decode raw LZMA2 stream from b->in to b->out. */
XZ_EXTERN
enum
xz_ret
xz_dec_lzma2_run
(
struct
xz_dec_lzma2
*
s
,
struct
xz_buf
*
b
);
/* Free the memory allocated for the LZMA2 decoder. */
XZ_EXTERN
void
xz_dec_lzma2_end
(
struct
xz_dec_lzma2
*
s
);
#ifdef XZ_DEC_BCJ
/*
* Allocate memory for BCJ decoders. xz_dec_bcj_reset() must be used before
* calling xz_dec_bcj_run().
*/
XZ_EXTERN
struct
xz_dec_bcj
*
xz_dec_bcj_create
(
bool
single_call
);
/*
* Decode the Filter ID of a BCJ filter. This implementation doesn't
* support custom start offsets, so no decoding of Filter Properties
* is needed. Returns XZ_OK if the given Filter ID is supported.
* Otherwise XZ_OPTIONS_ERROR is returned.
*/
XZ_EXTERN
enum
xz_ret
xz_dec_bcj_reset
(
struct
xz_dec_bcj
*
s
,
uint8_t
id
);
/*
* Decode raw BCJ + LZMA2 stream. This must be used only if there actually is
* a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run()
* must be called directly.
*/
XZ_EXTERN
enum
xz_ret
xz_dec_bcj_run
(
struct
xz_dec_bcj
*
s
,
struct
xz_dec_lzma2
*
lzma2
,
struct
xz_buf
*
b
);
/* Free the memory allocated for the BCJ filters. */
#define xz_dec_bcj_end(s) kfree(s)
#endif
#endif
vtoyjump/vtoyjump/xz-embedded-20130513/linux/lib/xz/xz_stream.h
0 → 100644
View file @
32643ecd
/*
* Definitions for handling the .xz file format
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#ifndef XZ_STREAM_H
#define XZ_STREAM_H
#if defined(__KERNEL__) && !XZ_INTERNAL_CRC32
# include <linux/crc32.h>
# undef crc32
# define xz_crc32(buf, size, crc) \
(~crc32_le(~(uint32_t)(crc), buf, size))
#endif
/*
* See the .xz file format specification at
* http://tukaani.org/xz/xz-file-format.txt
* to understand the container format.
*/
#define STREAM_HEADER_SIZE 12
#define HEADER_MAGIC "\3757zXZ"
#define HEADER_MAGIC_SIZE 6
#define FOOTER_MAGIC "YZ"
#define FOOTER_MAGIC_SIZE 2
/*
* Variable-length integer can hold a 63-bit unsigned integer or a special
* value indicating that the value is unknown.
*
* Experimental: vli_type can be defined to uint32_t to save a few bytes
* in code size (no effect on speed). Doing so limits the uncompressed and
* compressed size of the file to less than 256 MiB and may also weaken
* error detection slightly.
*/
typedef
uint64_t
vli_type
;
#define VLI_MAX ((vli_type)-1 / 2)
#define VLI_UNKNOWN ((vli_type)-1)
/* Maximum encoded size of a VLI */
#define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7)
/* Integrity Check types */
enum
xz_check
{
XZ_CHECK_NONE
=
0
,
XZ_CHECK_CRC32
=
1
,
XZ_CHECK_CRC64
=
4
,
XZ_CHECK_SHA256
=
10
};
/* Maximum possible Check ID */
#define XZ_CHECK_MAX 15
#endif
vtoyjump/vtoyjump/xz-embedded-20130513/linux/scripts/xz_wrap.sh
0 → 100644
View file @
32643ecd
#!/bin/sh
#
# This is a wrapper for xz to compress the kernel image using appropriate
# compression options depending on the architecture.
#
# Author: Lasse Collin <lasse.collin@tukaani.org>
#
# This file has been put into the public domain.
# You can do whatever you want with this file.
#
BCJ
=
LZMA2OPTS
=
case
$SRCARCH
in
x86
)
BCJ
=
--x86
;;
powerpc
)
BCJ
=
--powerpc
;;
ia64
)
BCJ
=
--ia64
;
LZMA2OPTS
=
pb
=
4
;;
arm
)
BCJ
=
--arm
;;
sparc
)
BCJ
=
--sparc
;;
esac
exec
xz
--check
=
crc32
$BCJ
--lzma2
=
$LZMA2OPTS
,dict
=
32MiB
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/Makefile
0 → 100644
View file @
32643ecd
#
# Makefile
#
# Author: Lasse Collin <lasse.collin@tukaani.org>
#
# This file has been put into the public domain.
# You can do whatever you want with this file.
#
CC
=
gcc
-std
=
gnu89
BCJ_CPPFLAGS
=
-DXZ_DEC_X86
-DXZ_DEC_POWERPC
-DXZ_DEC_IA64
\
-DXZ_DEC_ARM
-DXZ_DEC_ARMTHUMB
-DXZ_DEC_SPARC
CPPFLAGS
=
-DXZ_USE_CRC64
-DXZ_DEC_ANY_CHECK
CFLAGS
=
-ggdb3
-O2
-pedantic
-Wall
-Wextra
RM
=
rm
-f
VPATH
=
../linux/include/linux ../linux/lib/xz
COMMON_SRCS
=
xz_crc32.c xz_crc64.c xz_dec_stream.c xz_dec_lzma2.c xz_dec_bcj.c
COMMON_OBJS
=
$(COMMON_SRCS:.c=.o)
XZMINIDEC_OBJS
=
xzminidec.o
BYTETEST_OBJS
=
bytetest.o
BUFTEST_OBJS
=
buftest.o
BOOTTEST_OBJS
=
boottest.o
XZ_HEADERS
=
xz.h xz_private.h xz_stream.h xz_lzma2.h xz_config.h
PROGRAMS
=
xzminidec bytetest buftest boottest
ALL_CPPFLAGS
=
-I
../linux/include/linux
-I
.
$(BCJ_CPPFLAGS)
$(CPPFLAGS)
all
:
$(PROGRAMS)
%.o
:
%.c $(XZ_HEADERS)
$(CC)
$(ALL_CPPFLAGS)
$(CFLAGS)
-c
-o
$@
$<
xzminidec
:
$(COMMON_OBJS) $(XZMINIDEC_OBJS)
$(CC)
$(CFLAGS)
$(LDFLAGS)
-o
$@
$(COMMON_OBJS)
$(XZMINIDEC_OBJS)
bytetest
:
$(COMMON_OBJS) $(BYTETEST_OBJS)
$(CC)
$(CFLAGS)
$(LDFLAGS)
-o
$@
$(COMMON_OBJS)
$(BYTETEST_OBJS)
buftest
:
$(COMMON_OBJS) $(BUFTEST_OBJS)
$(CC)
$(CFLAGS)
$(LDFLAGS)
-o
$@
$(COMMON_OBJS)
$(BUFTEST_OBJS)
boottest
:
$(BOOTTEST_OBJS) $(COMMON_SRCS)
$(CC)
$(ALL_CPPFLAGS)
$(CFLAGS)
$(LDFLAGS)
-o
$@
$(BOOTTEST_OBJS)
.PHONY
:
clean
clean
:
-
$(RM)
$(COMMON_OBJS)
$(XZMINIDEC_OBJS)
$(BUFTEST_OBJS)
\
$(BOOTTEST_OBJS)
$(PROGRAMS)
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/boottest.c
0 → 100644
View file @
32643ecd
/*
* Test application for xz_boot.c
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#define STATIC static
#define INIT
static
void
error
(
/*const*/
char
*
msg
)
{
fprintf
(
stderr
,
"%s
\n
"
,
msg
);
}
/* Disable the CRC64 support even if it was enabled in the Makefile. */
#undef XZ_USE_CRC64
#include "../linux/lib/decompress_unxz.c"
static
uint8_t
in
[
1024
*
1024
];
static
uint8_t
out
[
1024
*
1024
];
static
int
fill
(
void
*
buf
,
unsigned
int
size
)
{
return
fread
(
buf
,
1
,
size
,
stdin
);
}
static
int
flush
(
/*const*/
void
*
buf
,
unsigned
int
size
)
{
return
fwrite
(
buf
,
1
,
size
,
stdout
);
}
static
void
test_buf_to_buf
(
void
)
{
size_t
in_size
;
int
ret
;
in_size
=
fread
(
in
,
1
,
sizeof
(
in
),
stdin
);
ret
=
decompress
(
in
,
in_size
,
NULL
,
NULL
,
out
,
NULL
,
&
error
);
/* fwrite(out, 1, FIXME, stdout); */
fprintf
(
stderr
,
"ret = %d
\n
"
,
ret
);
}
static
void
test_buf_to_cb
(
void
)
{
size_t
in_size
;
int
in_used
;
int
ret
;
in_size
=
fread
(
in
,
1
,
sizeof
(
in
),
stdin
);
ret
=
decompress
(
in
,
in_size
,
NULL
,
&
flush
,
NULL
,
&
in_used
,
&
error
);
fprintf
(
stderr
,
"ret = %d; in_used = %d
\n
"
,
ret
,
in_used
);
}
static
void
test_cb_to_cb
(
void
)
{
int
ret
;
ret
=
decompress
(
NULL
,
0
,
&
fill
,
&
flush
,
NULL
,
NULL
,
&
error
);
fprintf
(
stderr
,
"ret = %d
\n
"
,
ret
);
}
/*
* Not used by Linux <= 2.6.37-rc4 and newer probably won't use it either,
* but this kind of use case is still required to be supported by the API.
*/
static
void
test_cb_to_buf
(
void
)
{
int
in_used
;
int
ret
;
ret
=
decompress
(
in
,
0
,
&
fill
,
NULL
,
out
,
&
in_used
,
&
error
);
/* fwrite(out, 1, FIXME, stdout); */
fprintf
(
stderr
,
"ret = %d; in_used = %d
\n
"
,
ret
,
in_used
);
}
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
2
)
fprintf
(
stderr
,
"Usage: %s [bb|bc|cc|cb]
\n
"
,
argv
[
0
]);
else
if
(
strcmp
(
argv
[
1
],
"bb"
)
==
0
)
test_buf_to_buf
();
else
if
(
strcmp
(
argv
[
1
],
"bc"
)
==
0
)
test_buf_to_cb
();
else
if
(
strcmp
(
argv
[
1
],
"cc"
)
==
0
)
test_cb_to_cb
();
else
if
(
strcmp
(
argv
[
1
],
"cb"
)
==
0
)
test_cb_to_buf
();
else
fprintf
(
stderr
,
"Usage: %s [bb|bc|cc|cb]
\n
"
,
argv
[
0
]);
return
0
;
}
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/buftest.c
0 → 100644
View file @
32643ecd
/*
* Test application to test buffer-to-buffer decoding
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include "xz.h"
#define BUFFER_SIZE (1024 * 1024)
static
uint8_t
in
[
BUFFER_SIZE
];
static
uint8_t
out
[
BUFFER_SIZE
];
int
main
(
void
)
{
struct
xz_buf
b
;
struct
xz_dec
*
s
;
enum
xz_ret
ret
;
xz_crc32_init
();
s
=
xz_dec_init
(
XZ_SINGLE
,
0
);
if
(
s
==
NULL
)
{
fputs
(
"Initialization failed"
,
stderr
);
return
1
;
}
b
.
in
=
in
;
b
.
in_pos
=
0
;
b
.
in_size
=
fread
(
in
,
1
,
sizeof
(
in
),
stdin
);
b
.
out
=
out
;
b
.
out_pos
=
0
;
b
.
out_size
=
sizeof
(
out
);
ret
=
xz_dec_run
(
s
,
&
b
);
xz_dec_end
(
s
);
fwrite
(
out
,
1
,
b
.
out_pos
,
stdout
);
fprintf
(
stderr
,
"%d
\n
"
,
ret
);
return
0
;
}
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/bytetest.c
0 → 100644
View file @
32643ecd
/*
* Lazy test for the case when the output size is known
*
* Author: Lasse Collin <lasse.collin@tukaani.org>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "xz.h"
static
uint8_t
in
[
1
];
static
uint8_t
out
[
BUFSIZ
];
int
main
(
int
argc
,
char
**
argv
)
{
struct
xz_buf
b
;
struct
xz_dec
*
s
;
enum
xz_ret
ret
;
const
char
*
msg
;
size_t
uncomp_size
;
if
(
argc
!=
2
)
{
fputs
(
"Give uncompressed size as the argument"
,
stderr
);
return
1
;
}
uncomp_size
=
atoi
(
argv
[
1
]);
xz_crc32_init
();
/*
* Support up to 64 MiB dictionary. The actually needed memory
* is allocated once the headers have been parsed.
*/
s
=
xz_dec_init
(
XZ_DYNALLOC
,
1
<<
26
);
if
(
s
==
NULL
)
{
msg
=
"Memory allocation failed
\n
"
;
goto
error
;
}
b
.
in
=
in
;
b
.
in_pos
=
0
;
b
.
in_size
=
0
;
b
.
out
=
out
;
b
.
out_pos
=
0
;
b
.
out_size
=
uncomp_size
<
BUFSIZ
?
uncomp_size
:
BUFSIZ
;
while
(
true
)
{
if
(
b
.
in_pos
==
b
.
in_size
)
{
b
.
in_size
=
fread
(
in
,
1
,
sizeof
(
in
),
stdin
);
b
.
in_pos
=
0
;
}
ret
=
xz_dec_run
(
s
,
&
b
);
if
(
b
.
out_pos
==
sizeof
(
out
))
{
if
(
fwrite
(
out
,
1
,
b
.
out_pos
,
stdout
)
!=
b
.
out_pos
)
{
msg
=
"Write error
\n
"
;
goto
error
;
}
uncomp_size
-=
b
.
out_pos
;
b
.
out_pos
=
0
;
b
.
out_size
=
uncomp_size
<
BUFSIZ
?
uncomp_size
:
BUFSIZ
;
}
if
(
ret
==
XZ_OK
)
continue
;
#ifdef XZ_DEC_ANY_CHECK
if
(
ret
==
XZ_UNSUPPORTED_CHECK
)
{
fputs
(
argv
[
0
],
stderr
);
fputs
(
": "
,
stderr
);
fputs
(
"Unsupported check; not verifying "
"file integrity
\n
"
,
stderr
);
continue
;
}
#endif
if
(
uncomp_size
!=
b
.
out_pos
)
{
msg
=
"Uncompressed size doesn't match
\n
"
;
goto
error
;
}
if
(
fwrite
(
out
,
1
,
b
.
out_pos
,
stdout
)
!=
b
.
out_pos
||
fclose
(
stdout
))
{
msg
=
"Write error
\n
"
;
goto
error
;
}
switch
(
ret
)
{
case
XZ_STREAM_END
:
xz_dec_end
(
s
);
return
0
;
case
XZ_MEM_ERROR
:
msg
=
"Memory allocation failed
\n
"
;
goto
error
;
case
XZ_MEMLIMIT_ERROR
:
msg
=
"Memory usage limit reached
\n
"
;
goto
error
;
case
XZ_FORMAT_ERROR
:
msg
=
"Not a .xz file
\n
"
;
goto
error
;
case
XZ_OPTIONS_ERROR
:
msg
=
"Unsupported options in the .xz headers
\n
"
;
goto
error
;
case
XZ_DATA_ERROR
:
case
XZ_BUF_ERROR
:
msg
=
"File is corrupt
\n
"
;
goto
error
;
default:
msg
=
"Bug!
\n
"
;
goto
error
;
}
}
error:
xz_dec_end
(
s
);
fputs
(
argv
[
0
],
stderr
);
fputs
(
": "
,
stderr
);
fputs
(
msg
,
stderr
);
return
1
;
}
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/xz_config.h
0 → 100644
View file @
32643ecd
This diff is collapsed.
Click to expand it.
vtoyjump/vtoyjump/xz-embedded-20130513/userspace/xzminidec.c
0 → 100644
View file @
32643ecd
This diff is collapsed.
Click to expand it.
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment