nicbm.cc 10.7 KB
Newer Older
1
2
3
4
5
6
7
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <unistd.h>
#include <signal.h>
#include <cassert>
8
9
#include <ctime>
#include <iostream>
10
11
12

#include <nicbm.h>

13
//#define DEBUG_NICBM 1
14

15
#define SYNC_PERIOD (100 * 1000ULL) // 100ns
16
17
#define PCI_LATENCY (500 * 1000ULL) // 500ns
#define ETH_LATENCY (500 * 1000ULL) // 500ns
18
#define DMA_MAX_PENDING 64
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


using namespace nicbm;

static volatile int exiting = 0;

static uint64_t main_time = 0;


static void sigint_handler(int dummy)
{
    exiting = 1;
}

static void sigusr1_handler(int dummy)
{
    fprintf(stderr, "main_time = %lu\n", main_time);
}

volatile union cosim_pcie_proto_d2h *Runner::d2h_alloc(void)
{
    volatile union cosim_pcie_proto_d2h *msg =
        nicsim_d2h_alloc(&nsparams, main_time);
    if (msg == NULL) {
        fprintf(stderr, "d2h_alloc: no entry available\n");
        abort();
    }
    return msg;
}

volatile union cosim_eth_proto_d2n *Runner::d2n_alloc(void)
{
    volatile union cosim_eth_proto_d2n *msg =
        nicsim_d2n_alloc(&nsparams, main_time);
    if (msg == NULL) {
        fprintf(stderr, "d2n_alloc: no entry available\n");
        abort();
    }
    return msg;
}

void Runner::issue_dma(DMAOp &op)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
{
    if (dma_pending < DMA_MAX_PENDING) {
        // can directly issue
#ifdef DEBUG_NICBM
        printf("nicbm: issuing dma op %p addr %lx len %zu pending %zu\n", &op,
                op.dma_addr, op.len, dma_pending);
#endif
        dma_do(op);
    } else {
#ifdef DEBUG_NICBM
        printf("nicbm: enqueuing dma op %p addr %lx len %zu pending %zu\n", &op,
                op.dma_addr, op.len, dma_pending);
#endif
        dma_queue.push_back(&op);
    }
}

void Runner::dma_trigger()
{
    if (dma_queue.empty() || dma_pending == DMA_MAX_PENDING)
        return;

    DMAOp *op = dma_queue.front();
    dma_queue.pop_front();

    dma_do(*op);
}

void Runner::dma_do(DMAOp &op)
90
91
{
    volatile union cosim_pcie_proto_d2h *msg = d2h_alloc();
92
    dma_pending++;
93
#ifdef DEBUG_NICBM
94
95
    printf("nicbm: executing dma op %p addr %lx len %zu pending %zu\n", &op,
            op.dma_addr, op.len, dma_pending);
96
97
98
99
#endif

    if (op.write) {
        volatile struct cosim_pcie_proto_d2h_write *write = &msg->write;
100
101
102
103
104
105
        if (dintro.d2h_elen < sizeof(*write) + op.len) {
            fprintf(stderr, "issue_dma: write too big (%zu), can only fit up "
                    "to (%zu)\n", op.len, dintro.d2h_elen - sizeof(*write));
            abort();
        }

106
107
108
109
110
111
112
113
114
        write->req_id = (uintptr_t) &op;
        write->offset = op.dma_addr;
        write->len = op.len;
        memcpy((void *)write->data, (void *)op.data, op.len);
        // WMB();
        write->own_type = COSIM_PCIE_PROTO_D2H_MSG_WRITE |
            COSIM_PCIE_PROTO_D2H_OWN_HOST;
    } else {
        volatile struct cosim_pcie_proto_d2h_read *read = &msg->read;
115
116
117
118
119
120
121
122
        if (dintro.h2d_elen < sizeof(struct cosim_pcie_proto_h2d_readcomp) +
                op.len) {
            fprintf(stderr, "issue_dma: write too big (%zu), can only fit up "
                    "to (%zu)\n", op.len, dintro.h2d_elen -
                    sizeof(struct cosim_pcie_proto_h2d_readcomp));
            abort();
        }

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        read->req_id = (uintptr_t) &op;
        read->offset = op.dma_addr;
        read->len = op.len;
        // WMB();
        read->own_type = COSIM_PCIE_PROTO_D2H_MSG_READ |
            COSIM_PCIE_PROTO_D2H_OWN_HOST;
    }
}

void Runner::msi_issue(uint8_t vec)
{
    volatile union cosim_pcie_proto_d2h *msg = d2h_alloc();
#ifdef DEBUG_NICBM
    printf("nicbm: issue MSI interrupt vec %u\n", vec);
#endif
    volatile struct cosim_pcie_proto_d2h_interrupt *intr = &msg->interrupt;
    intr->vector = vec;
    intr->inttype = COSIM_PCIE_PROTO_INT_MSI;

    // WMB();
    intr->own_type = COSIM_PCIE_PROTO_D2H_MSG_INTERRUPT |
        COSIM_PCIE_PROTO_D2H_OWN_HOST;
}

147
148
149
150
151
152
153
154
155
156
void Runner::event_schedule(TimedEvent &evt)
{
    events.insert(&evt);
}

void Runner::event_cancel(TimedEvent &evt)
{
    events.erase(&evt);
}

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
void Runner::h2d_read(volatile struct cosim_pcie_proto_h2d_read *read)
{
    volatile union cosim_pcie_proto_d2h *msg;
    volatile struct cosim_pcie_proto_d2h_readcomp *rc;

    msg = d2h_alloc();
    rc = &msg->readcomp;

    dev.reg_read(read->bar, read->offset, (void *) rc->data, read->len);
    rc->req_id = read->req_id;

#ifdef DEBUG_NICBM
    uint64_t dbg_val = 0;
    memcpy(&dbg_val, (const void *) rc->data, read->len <= 8 ? read->len : 8);
    printf("nicbm: read(off=0x%lx, len=%u, val=0x%lx)\n", read->offset,
            read->len, dbg_val);
#endif

    //WMB();
    rc->own_type = COSIM_PCIE_PROTO_D2H_MSG_READCOMP |
        COSIM_PCIE_PROTO_D2H_OWN_HOST;
}

void Runner::h2d_write(volatile struct cosim_pcie_proto_h2d_write *write)
{
    volatile union cosim_pcie_proto_d2h *msg;
    volatile struct cosim_pcie_proto_d2h_writecomp *wc;

    msg = d2h_alloc();
    wc = &msg->writecomp;

#ifdef DEBUG_NICBM
    uint64_t dbg_val = 0;
    memcpy(&dbg_val, (const void *) write->data, write->len <= 8 ? write->len : 8);
    printf("nicbm: write(off=0x%lx, len=%u, val=0x%lx)\n", write->offset,
            write->len, dbg_val);
#endif
    dev.reg_write(write->bar, write->offset, (void *) write->data, write->len);
    wc->req_id = write->req_id;

    //WMB();
    wc->own_type = COSIM_PCIE_PROTO_D2H_MSG_WRITECOMP |
        COSIM_PCIE_PROTO_D2H_OWN_HOST;
}

void Runner::h2d_readcomp(volatile struct cosim_pcie_proto_h2d_readcomp *rc)
{
    DMAOp *op = (DMAOp *)(uintptr_t)rc->req_id;

#ifdef DEBUG_NICBM
    printf("nicbm: completed dma read op %p addr %lx len %zu\n", op,
            op->dma_addr, op->len);
#endif

    memcpy(op->data, (void *)rc->data, op->len);
    dev.dma_complete(*op);
213
214
215

    dma_pending--;
    dma_trigger();
216
217
218
219
220
221
222
223
224
225
226
227
}

void Runner::h2d_writecomp(volatile struct cosim_pcie_proto_h2d_writecomp *wc)
{
    DMAOp *op = (DMAOp *)(uintptr_t)wc->req_id;

#ifdef DEBUG_NICBM
    printf("nicbm: completed dma write op %p addr %lx len %zu\n", op,
            op->dma_addr, op->len);
#endif

    dev.dma_complete(*op);
228
229
230

    dma_pending--;
    dma_trigger();
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
}

void Runner::eth_recv(volatile struct cosim_eth_proto_n2d_recv *recv)
{
#ifdef DEBUG_NICBM
    printf("nicbm: eth rx: port %u len %u\n", recv->port, recv->len);
#endif

    dev.eth_rx(recv->port, (void *) recv->data, recv->len);
}

void Runner::eth_send(const void *data, size_t len)
{
#ifdef DEBUG_NICBM
    printf("nicbm: eth tx: len %zu\n", len);
#endif

    volatile union cosim_eth_proto_d2n *msg = d2n_alloc();
    volatile struct cosim_eth_proto_d2n_send *send = &msg->send;
    send->port = 0; // single port
    send->len = len;
    memcpy((void *)send->data, data, len);
    send->own_type = COSIM_ETH_PROTO_D2N_MSG_SEND |
        COSIM_ETH_PROTO_D2N_OWN_NET;
}

void Runner::poll_h2d()
{
    volatile union cosim_pcie_proto_h2d *msg =
        nicif_h2d_poll(&nsparams, main_time);
    uint8_t type;

    if (msg == NULL)
        return;

    type = msg->dummy.own_type & COSIM_PCIE_PROTO_H2D_MSG_MASK;
    switch (type) {
        case COSIM_PCIE_PROTO_H2D_MSG_READ:
            h2d_read(&msg->read);
            break;

        case COSIM_PCIE_PROTO_H2D_MSG_WRITE:
            h2d_write(&msg->write);
            break;

        case COSIM_PCIE_PROTO_H2D_MSG_READCOMP:
            h2d_readcomp(&msg->readcomp);
            break;

        case COSIM_PCIE_PROTO_H2D_MSG_WRITECOMP:
            h2d_writecomp(&msg->writecomp);
            break;

        case COSIM_PCIE_PROTO_H2D_MSG_SYNC:
            break;

        default:
            fprintf(stderr, "poll_h2d: unsupported type=%u\n", type);
    }

    nicif_h2d_done(msg);
    nicif_h2d_next();
}

void Runner::poll_n2d()
{
    volatile union cosim_eth_proto_n2d *msg =
        nicif_n2d_poll(&nsparams, main_time);
    uint8_t t;

    if (msg == NULL)
        return;

    t = msg->dummy.own_type & COSIM_ETH_PROTO_N2D_MSG_MASK;
    switch (t) {
        case COSIM_ETH_PROTO_N2D_MSG_RECV:
            eth_recv(&msg->recv);
            break;

        case COSIM_ETH_PROTO_N2D_MSG_SYNC:
            break;

        default:
            fprintf(stderr, "poll_n2d: unsupported type=%u", t);
    }

    nicif_n2d_done(msg);
    nicif_n2d_next();
}

321
322
323
324
325
uint64_t Runner::time_ps() const
{
    return main_time;
}

326
327
328
329
330
uint64_t Runner::get_mac_addr() const
{
    return mac_addr;
}

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
bool Runner::event_next(uint64_t &retval)
{
    if (events.empty())
        return false;

    retval = (*events.begin())->time;
    return true;
}

void Runner::event_trigger()
{
    auto it = events.begin();
    if (it == events.end())
        return;

    TimedEvent *ev = *it;

    // event is in the future
    if (ev->time > main_time)
        return;

    events.erase(it);
    dev.timed_event(*ev);
}

356
Runner::Runner(Device &dev_)
357
    : dev(dev_), events(event_cmp())
358
{
359
    //mac_addr = lrand48() & ~(3ULL << 46);
360
    dma_pending = 0;
361
362
363
364
    srand48(time(NULL) ^ getpid());
    mac_addr = lrand48();
    mac_addr <<= 16;
    mac_addr ^= lrand48();
365
    mac_addr &= ~3ULL;
366
367

    std::cerr << std::hex << mac_addr << std::endl;
368
369
370
371
372
}

int Runner::runMain(int argc, char *argv[])
{
    uint64_t next_ts;
373
    uint64_t max_step = 10000;
374
375
376
377
378
379
380
381
382
383
384
385
386

    if (argc != 4 && argc != 5) {
        fprintf(stderr, "Usage: corundum_bm PCI-SOCKET ETH-SOCKET "
                "SHM [START-TICK]\n");
        return EXIT_FAILURE;
    }
    if (argc == 5)
        main_time = strtoull(argv[4], NULL, 0);


    signal(SIGINT, sigint_handler);
    signal(SIGUSR1, sigusr1_handler);

387
388
    memset(&dintro, 0, sizeof(dintro));
    dev.setup_intro(dintro);
389
390
391
392
393
394
395
396
397

    nsparams.sync_pci = 1;
    nsparams.sync_eth = 1;
    nsparams.pci_socket_path = argv[1];
    nsparams.eth_socket_path = argv[2];
    nsparams.shm_path = argv[3];
    nsparams.pci_latency = PCI_LATENCY;
    nsparams.eth_latency = ETH_LATENCY;
    nsparams.sync_delay = SYNC_PERIOD;
398
    if (nicsim_init(&nsparams, &dintro)) {
399
400
401
402
403
        return EXIT_FAILURE;
    }
    fprintf(stderr, "sync_pci=%d sync_eth=%d\n", nsparams.sync_pci,
        nsparams.sync_eth);

404
405
    bool is_sync = nsparams.sync_pci || nsparams.sync_eth;

406
407
408
409
410
411
412
413
    while (!exiting) {
        while (nicsim_sync(&nsparams, main_time)) {
            fprintf(stderr, "warn: nicsim_sync failed (t=%lu)\n", main_time);
        }

        do {
            poll_h2d();
            poll_n2d();
414
415
416
417
            event_trigger();

            if (is_sync) {
                next_ts = netsim_next_timestamp(&nsparams);
418
419
                if (next_ts > main_time + max_step)
                    next_ts = main_time + max_step;
420
            } else {
421
                next_ts = main_time + max_step;
422
423
424
425
426
427
428
            }

            uint64_t ev_ts;
            if (event_next(ev_ts) && ev_ts < next_ts)
                next_ts = ev_ts;

        } while (next_ts <= main_time && !exiting);
429
430
431
432
433
434
435
        main_time = next_ts;
    }

    fprintf(stderr, "exit main_time: %lu\n", main_time);
    nicsim_cleanup();
    return 0;
}
436
437
438
439

void Runner::Device::timed_event(TimedEvent &te)
{
}