pktgen.cc 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*
 * Copyright 2021 Max Planck Institute for Software Systems, and
 * National University of Singapore
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include <unistd.h>
#include <pcap/pcap.h>
#include <linux/ip.h>
#include <linux/if_ether.h>
#include <arpa/inet.h>

#include <cassert>
#include <climits>
#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <unordered_map>
#include <vector>

extern "C" {
#include <simbricks/netif/netif.h>
#include <simbricks/nicif/nicif.h>
#include <simbricks/proto/base.h>
};

//#define NETSWITCH_DEBUG
#define NETSWITCH_STAT

static uint64_t sync_period = (500 * 1000ULL);  // 500ns
static uint64_t eth_latency = (500 * 1000ULL);  // 500ns
static int sync_mode = SIMBRICKS_PROTO_SYNC_SIMBRICKS;
static pcap_dumper_t *dumpfile = nullptr;
#define PKT_LEN 1500 //byte
static uint64_t bit_rate = 100 * 1000ULL * 1000ULL * 1000ULL; // 100 Gbps
static uint64_t target_tick = 10 * 1000ULL * 1000ULL * 1000ULL * 1000ULL; // 10s
static uint64_t last_pkt_sent = 0;
static uint64_t pkt_recv_num = 0;
static uint64_t pkt_recv_byte = 0;
static uint64_t pkt_tx_num = 0;
static uint64_t pkt_tx_byte = 0;
static uint64_t period = (1E12 * 8 * PKT_LEN) / bit_rate; // per packet
static uint8_t packet[PKT_LEN];

#ifdef NETSWITCH_STAT
#endif

#ifdef NETSWITCH_STAT
static uint64_t d2n_poll_total = 0;
static uint64_t d2n_poll_suc = 0;
static uint64_t d2n_poll_sync = 0;

static uint64_t s_d2n_poll_total = 0;
static uint64_t s_d2n_poll_suc = 0;
static uint64_t s_d2n_poll_sync = 0;

static int stat_flag = 0;
#endif

/* MAC address type */
struct MAC {
  const uint8_t *data;

  explicit MAC(const uint8_t *data) : data(data) {
  }

  bool operator==(const MAC &other) const {
    for (int i = 0; i < 6; i++) {
      if (data[i] != other.data[i]) {
        return false;
      }
    }
    return true;
  }
};

struct mac_addr{
  uint8_t addr[6];
};

namespace std {
template <>
struct hash<MAC> {
  size_t operator()(const MAC &m) const {
    size_t res = 0;
    for (int i = 0; i < 6; i++) {
      res = (res << 4) | (res ^ m.data[i]);
    }
    return res;
  }
};
}  // namespace std


/** Abstract base switch port */
class Port {
 public:
  enum RxPollState {
    kRxPollSuccess = 0,
    kRxPollFail = 1,
    kRxPollSync = 2,
  };
  struct mac_addr my_mac;
  struct mac_addr dest_mac;
  
  virtual ~Port() = default;

  virtual bool Connect(const char *path, int sync) = 0;
  virtual bool IsSync() = 0;
  virtual void Sync(uint64_t cur_ts) = 0;
  virtual void AdvanceEpoch(uint64_t cur_ts) = 0;
  virtual uint64_t NextTimestamp() = 0;
  virtual enum RxPollState RxPacket(
      const void *& data, size_t &len, uint64_t cur_ts) = 0;
  virtual void RxDone() = 0;
  virtual bool TxPacket(const void *data, size_t len, uint64_t cur_ts) = 0;
};


/** Normal network switch port (conneting to a NIC) */
class NetPort : public Port {
 protected:
  struct SimbricksNetIf netif_;
  volatile union SimbricksProtoNetD2N *rx_;
  int sync_;

 public:
  NetPort() : rx_(nullptr), sync_(0) {
    memset(&netif_, 0, sizeof(netif_));
  }

  NetPort(const NetPort &other) : netif_(other.netif_), rx_(other.rx_),
      sync_(other.sync_) {}

  virtual bool Connect(const char *path, int sync) override {
    sync_ = sync;
    return SimbricksNetIfInit(&netif_, path, &sync_) == 0;
  }

  virtual bool IsSync() override {
    return sync_;
  }

  virtual void Sync(uint64_t cur_ts) override {
    if (SimbricksNetIfN2DSync(&netif_, cur_ts, eth_latency, sync_period,
                              sync_mode) != 0) {
      fprintf(stderr, "SimbricksNetIfN2DSync failed\n");
      abort();
    }
  }

  virtual void AdvanceEpoch(uint64_t cur_ts) override {
    SimbricksNetIfAdvanceEpoch(cur_ts, sync_period, sync_mode);
  }

  virtual uint64_t NextTimestamp() override {
    return SimbricksNetIfD2NTimestamp(&netif_);
  }

  virtual enum RxPollState RxPacket(
      const void *& data, size_t &len, uint64_t cur_ts) override {
    assert(rx_ == nullptr);

    rx_ = SimbricksNetIfD2NPoll(&netif_, cur_ts);
    if (!rx_)
      return kRxPollFail;

    uint8_t type = rx_->dummy.own_type & SIMBRICKS_PROTO_NET_D2N_MSG_MASK;
    if (type == SIMBRICKS_PROTO_NET_D2N_MSG_SEND) {
      data = (const void *)rx_->send.data;
      len = rx_->send.len;
      return kRxPollSuccess;
    } else if (type == SIMBRICKS_PROTO_NET_D2N_MSG_SYNC) {
      return kRxPollSync;
    } else {
      fprintf(stderr, "switch_pkt: unsupported type=%u\n", type);
      abort();
    }
  }

  virtual void RxDone() override {
    assert(rx_ != nullptr);

    SimbricksNetIfD2NDone(&netif_, rx_);
    rx_ = nullptr;
  }

  virtual bool TxPacket(
      const void *data, size_t len, uint64_t cur_ts) override {
    volatile union SimbricksProtoNetN2D *msg_to =
      SimbricksNetIfN2DAlloc(&netif_, cur_ts, eth_latency);
    if (!msg_to)
      return false;

    volatile struct SimbricksProtoNetN2DRecv *rx;
    rx = &msg_to->recv;
    rx->len = len;
    rx->port = 0;
    memcpy((void *)rx->data, data, len);

    // WMB();
    rx->own_type =
        SIMBRICKS_PROTO_NET_N2D_MSG_RECV | SIMBRICKS_PROTO_NET_N2D_OWN_DEV;
    return true;
  }
};


/** Hosting network switch port (connected to another network) */
class NetHostPort : public Port {
 protected:
  struct SimbricksNicIf nicif_;
  volatile union SimbricksProtoNetN2D *rx_;
  int sync_;

 public:

  NetHostPort() : rx_(nullptr), sync_(0) {
    memset(&nicif_, 0, sizeof(nicif_));
    memset(&my_mac, 0, sizeof(my_mac));
    memset(&dest_mac, 0, sizeof(dest_mac));
  }

  NetHostPort(const NetHostPort &other) : nicif_(other.nicif_), rx_(other.rx_),
      sync_(other.sync_){}

  virtual bool Connect(const char *path, int sync) override {
    sync_ = sync;
    std::string shm_path = path;
    shm_path += "-shm";
    struct SimbricksNicIfParams params = {
      .pci_socket_path = nullptr,
      .eth_socket_path = path,
      .shm_path = shm_path.c_str(),

      .pci_latency = 0,
      .eth_latency = eth_latency,
      .sync_delay = sync_period,

      .sync_pci = 0,
      .sync_eth = sync,
      .sync_mode = sync_mode,
    };
    struct SimbricksProtoPcieDevIntro di;
    int ret = SimbricksNicIfInit(&nicif_, &params, &di);
    sync_ = params.sync_eth;
    return ret == 0;
  }

  virtual bool IsSync() override {
    return sync_;
  }

  virtual void Sync(uint64_t cur_ts) override {
    if (SimbricksNicIfSync(&nicif_, cur_ts) != 0) {
      fprintf(stderr, "SimbricksNicIfSync failed\n");
      abort();
    }
  }

  virtual void AdvanceEpoch(uint64_t cur_ts) override {
    SimbricksNicIfAdvanceEpoch(&nicif_, cur_ts);
  }

  virtual uint64_t NextTimestamp() override {
    return SimbricksNicIfNextTimestamp(&nicif_);
  }

  virtual enum RxPollState RxPacket(
      const void *& data, size_t &len, uint64_t cur_ts) override {
    assert(rx_ == nullptr);

    rx_ = SimbricksNicIfN2DPoll(&nicif_, cur_ts);
    if (!rx_)
      return kRxPollFail;

    uint8_t type = rx_->dummy.own_type & SIMBRICKS_PROTO_NET_N2D_MSG_MASK;
    if (type == SIMBRICKS_PROTO_NET_N2D_MSG_RECV) {
      data = (const void *)rx_->recv.data;
      len = rx_->recv.len;
      return kRxPollSuccess;
    } else if (type == SIMBRICKS_PROTO_NET_N2D_MSG_SYNC) {
      return kRxPollSync;
    } else {
      fprintf(stderr, "switch_pkt: unsupported type=%u\n", type);
      abort();
    }
  }

  virtual void RxDone() override {
    assert(rx_ != nullptr);

    SimbricksNicIfN2DDone(&nicif_, rx_);
    SimbricksNicIfN2DNext(&nicif_);
    rx_ = nullptr;
  }

  virtual bool TxPacket(
      const void *data, size_t len, uint64_t cur_ts) override {
    volatile union SimbricksProtoNetD2N *msg_to =
      SimbricksNicIfD2NAlloc(&nicif_, cur_ts);
    if (!msg_to)
      return false;

    volatile struct SimbricksProtoNetD2NSend *rx;
    rx = &msg_to->send;
    rx->len = len;
    rx->port = 0;
    memcpy((void *)rx->data, data, len);

    // WMB();
    rx->own_type =
        SIMBRICKS_PROTO_NET_D2N_MSG_SEND | SIMBRICKS_PROTO_NET_D2N_OWN_NET;
    return true;
  }
};


/* Global variables */
static uint64_t cur_ts = 0;
static int exiting = 0;
static const uint8_t bcast[6] = {0xFF};
static const MAC bcast_addr(bcast);
static std::vector<Port *> ports;
static std::unordered_map<MAC, int> mac_table;

static void sigint_handler(int dummy) {
  exiting = 1;
}

static void sigusr1_handler(int dummy) {
  fprintf(stderr, "main_time = %lu\n", cur_ts);
}

#ifdef NETSWITCH_STAT
static void sigusr2_handler(int dummy) {
  stat_flag = 1;
}
#endif

static void forward_pkt(const void *pkt_data, size_t pkt_len, size_t port_id) {
  struct pcap_pkthdr ph;
  Port &dest_port = *ports[port_id];

  // log to pcap file if initialized
  if (dumpfile) {
      memset(&ph, 0, sizeof(ph));
      ph.ts.tv_sec = cur_ts / 1000000000000ULL;
      ph.ts.tv_usec = (cur_ts % 1000000000000ULL) / 1000ULL;
      ph.caplen = pkt_len;
      ph.len = pkt_len;
      pcap_dump((unsigned char *)dumpfile, &ph, (unsigned char *)pkt_data);
  }
  // print sending tick: [packet type] source_IP -> dest_IP len:

#ifdef NETSWITCH_DEBUG
  uint16_t eth_proto;
  struct ethhdr *hdr;
  struct iphdr *iph;
  hdr = (struct ethhdr*)pkt_data;
  eth_proto = ntohs(hdr->h_proto);
  iph = (struct iphdr *)(hdr + 1);
  fprintf(stderr, "%20lu: ", cur_ts);
  if (eth_proto == ETH_P_IP){
    fprintf(stderr, "[ IP] ");
    
  } 
  else if(eth_proto == ETH_P_ARP){
    fprintf(stderr, "[ARP] ");
  } 
  else{
    fprintf(stderr, "unkwon eth type\n");
  }

  fprintf(stderr, "%8X -> %8X len: %lu\n ", iph->saddr, iph->daddr, iph->tot_len + sizeof(struct ethhdr));
#endif

  if (!dest_port.TxPacket(pkt_data, pkt_len, cur_ts))
    fprintf(stderr, "forward_pkt: dropping packet on port %zu\n", port_id);
}

static void pollq(Port &port, size_t iport) {
  // poll N2D queue
  // send packet
  const void *pkt_data;
  size_t pkt_len;

#ifdef NETSWITCH_STAT
  d2n_poll_total += 1;
  if (stat_flag){
    s_d2n_poll_total += 1;
  }
#endif

#ifdef NETSWITCH_STAT
    d2n_poll_suc += 1;
    if (stat_flag){
      s_d2n_poll_suc += 1;
    }
#endif

  enum Port::RxPollState poll = port.RxPacket(pkt_data, pkt_len, cur_ts);
  if (poll == Port::kRxPollFail) {
    return; // do nothing
  }


  if (poll == Port::kRxPollSuccess) { 
    //stat received bytes
    pkt_recv_num++;
    pkt_recv_byte += pkt_len;

    // Get MAC addresses
    // MAC dst((const uint8_t *)pkt_data), src((const uint8_t *)pkt_data + 6);
    // // MAC learning
    // if (!(src == bcast_addr)) {
    //   mac_table[src] = iport;
    // }
    // // L2 forwarding
    // auto i = mac_table.find(dst);
    // if (i != mac_table.end()) {
    //   size_t eport = i->second;
    //   forward_pkt(pkt_data, pkt_len, eport);
    // } else {
    //   // Broadcast
    //   for (size_t eport = 0; eport < ports.size(); eport++) {
    //     if (eport != iport) {
    //       // Do not forward to ingress port
    //       forward_pkt(pkt_data, pkt_len, eport);
    //     }
    //   }
    // }
  } else if (poll == Port::kRxPollSync) {
#ifdef NETSWITCH_STAT
    d2n_poll_sync += 1;
    if (stat_flag){
      s_d2n_poll_sync += 1;
    }
#endif
  } else {
    fprintf(stderr, "pktgen: unsupported poll result=%u\n", poll);
    abort();
  }
  port.RxDone();



}


static void sendq(Port &port, size_t iport){
  //then send 
  if (port.IsSync()){
    while((last_pkt_sent + period) <= cur_ts){
      port.TxPacket(packet, PKT_LEN, last_pkt_sent + period);
      last_pkt_sent += period;
      pkt_tx_num++;
      pkt_tx_byte += PKT_LEN;
    }
  }
  else{
    port.TxPacket(packet, PKT_LEN, last_pkt_sent + period);
  }
  // if not sync: send packet
  // else: send packet periodically until allowed time
  // while(allowed_timestamp){ since_last_send + period = to_send_time <= curtick 
  //  txpacket(todest)
  // }

}

int main(int argc, char *argv[]) {
  int c;
  int bad_option = 0;
  int sync_eth = 1;
  pcap_t *pc = nullptr;
  int my_num = 0;

  // Parse command line argument
  while ((c = getopt(argc, argv, "s:h:uS:E:m:p:n:")) != -1 && !bad_option) {
    switch (c) {
      case 's': {
        NetPort *port = new NetPort;
        fprintf(stderr, "Switch connecting to: %s\n", optarg);
        if (!port->Connect(optarg, sync_eth)) {
          fprintf(stderr, "connecting to %s failed\n", optarg);
          return EXIT_FAILURE;
        }
        ports.push_back(port);
        break;
      }

      case 'h': {
        NetHostPort *port = new NetHostPort;
        fprintf(stderr, "Switch listening on: %s\n", optarg);
        if (!port->Connect(optarg, sync_eth)) {
          fprintf(stderr, "listening on %s failed\n", optarg);
          return EXIT_FAILURE;
        }
        ports.push_back(port);
        break;
      }

      case 'u':
        sync_eth = 0;
        break;

      case 'S':
        sync_period = strtoull(optarg, NULL, 0) * 1000ULL;
        break;

      case 'E':
        eth_latency = strtoull(optarg, NULL, 0) * 1000ULL;
        break;

      case 'm':
        sync_mode = strtol(optarg, NULL, 0);
        assert(sync_mode == SIMBRICKS_PROTO_SYNC_SIMBRICKS ||
               sync_mode == SIMBRICKS_PROTO_SYNC_BARRIER);
        break;

      case 'p':
        pc = pcap_open_dead_with_tstamp_precision(DLT_EN10MB, 65535,
                                                  PCAP_TSTAMP_PRECISION_NANO);
        if (pc == nullptr) {
            perror("pcap_open_dead failed");
            return EXIT_FAILURE;
        }

        dumpfile = pcap_dump_open(pc, optarg);
        break;
      case 'n':
        my_num = strtol(optarg, NULL, 0);
Hejing Li's avatar
Hejing Li committed
553
554
        fprintf(stderr, "my_num is: %d\n", my_num);
        assert(my_num < 255);
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
        break;

      default:
        fprintf(stderr, "unknown option %c\n", c);
        bad_option = 1;
        break;
    }
  }

  if (ports.empty() || bad_option) {
    fprintf(stderr,
            "Usage: net_switch [-S SYNC-PERIOD] [-E ETH-LATENCY] "
            "-s SOCKET-A [-s SOCKET-B ...] [-n my_num]\n");
    return EXIT_FAILURE;
  }


  Port *pkt_port = ports.front();
  pkt_port->my_mac.addr[5] = my_num;
  if (my_num % 2){ // odd num
    pkt_port->dest_mac.addr[5] = my_num - 1;
  }
  else{ // even number
    pkt_port->dest_mac.addr[5] = my_num + 1;
  }
  struct mac_addr *mac_tmp = (struct mac_addr*)(&packet[0]);
  mac_tmp->addr[5] = pkt_port->dest_mac.addr[5]; //dest mac
  mac_tmp = (struct mac_addr*)(&packet[6]);
  mac_tmp->addr[5] = pkt_port->my_mac.addr[5]; //source mac

  int kk;
  for (kk = 12; kk < PKT_LEN - 12; kk++){
    packet[kk] = 0xFF;
  }

  signal(SIGINT, sigint_handler);
  signal(SIGTERM, sigint_handler);
  signal(SIGUSR1, sigusr1_handler);

#ifdef NETSWITCH_STAT
  signal(SIGUSR2, sigusr2_handler);
#endif


  printf("start polling\n");
  while (!exiting) {
    // Sync all interfaces
    for (auto port : ports)
      port->Sync(cur_ts);
    for (auto port : ports)
      port->AdvanceEpoch(cur_ts);

    // Switch packets
    uint64_t min_ts;
    do {
      min_ts = ULLONG_MAX;
      for (size_t port_i = 0; port_i < ports.size(); port_i++) {
        auto &port = *ports[port_i];
        pollq(port, port_i);
        sendq(port, port_i);
        if (port.IsSync()) {
          uint64_t ts = port.NextTimestamp();
          min_ts = ts < min_ts ? ts : min_ts;
        }
      }
    } while (!exiting && (min_ts <= cur_ts));

    // Update cur_ts
    if (min_ts < ULLONG_MAX) {
      // a bit broken but should probably do
      cur_ts = SimbricksNetIfAdvanceTime(min_ts, sync_period, sync_mode);
      if (cur_ts >= target_tick){
        printf("run to %lu tics\n", cur_ts);
        exiting = 1;
      }
    }
  }

#ifdef NETSWITCH_STAT
  fprintf(stderr, "sent packet: %20lu  [%20lu Byte]\n", pkt_tx_num, pkt_tx_byte);
  fprintf(stderr, "recv packet: %20lu  [%20lu Byte]\n", pkt_recv_num, pkt_recv_byte);

  fprintf(stderr, "%20s: %22lu %20s: %22lu  poll_suc_rate: %f\n",
          "d2n_poll_total", d2n_poll_total, "d2n_poll_suc", d2n_poll_suc,
          (double)d2n_poll_suc / d2n_poll_total);
  fprintf(stderr, "%65s: %22lu  sync_rate: %f\n", "d2n_poll_sync",
          d2n_poll_sync, (double)d2n_poll_sync / d2n_poll_suc);

  fprintf(stderr, "%20s: %22lu %20s: %22lu  poll_suc_rate: %f\n",
          "s_d2n_poll_total", s_d2n_poll_total, "s_d2n_poll_suc", s_d2n_poll_suc,
          (double)s_d2n_poll_suc / s_d2n_poll_total);
  fprintf(stderr, "%65s: %22lu  sync_rate: %f\n", "s_d2n_poll_sync",
          s_d2n_poll_sync, (double)s_d2n_poll_sync / s_d2n_poll_suc);
#endif

  return 0;
}