README.md 52.2 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
<!-- ## **HunyuanDiT** -->

<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/logo.png"  height=100>
</p>

# Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding

<div align="center">
  <a href="https://github.com/Tencent/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Code&message=Github&color=blue&logo=github-pages"></a> &ensp;
  <a href="https://dit.hunyuan.tencent.com"><img src="https://img.shields.io/static/v1?label=Project%20Page&message=Github&color=blue&logo=github-pages"></a> &ensp;
  <a href="https://arxiv.org/abs/2405.08748"><img src="https://img.shields.io/static/v1?label=Tech Report&message=Arxiv:HunYuan-DiT&color=red&logo=arxiv"></a> &ensp;
  <a href="https://arxiv.org/abs/2403.08857"><img src="https://img.shields.io/static/v1?label=Paper&message=Arxiv:DialogGen&color=red&logo=arxiv"></a> &ensp;
  <a href="https://huggingface.co/Tencent-Hunyuan/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT&message=HuggingFace&color=yellow"></a> &ensp;
  <a href="https://hunyuan.tencent.com/bot/chat"><img src="https://img.shields.io/static/v1?label=Hunyuan Bot&message=Web&color=green"></a> &ensp;
  <a href="https://huggingface.co/spaces/Tencent-Hunyuan/HunyuanDiT"><img src="https://img.shields.io/static/v1?label=Hunyuan-DiT Demo&message=HuggingFace&color=yellow"></a> &ensp;
  <a href="./comfyui"><img src="https://img.shields.io/static/v1?label=ComfyUI Support&message=ComfyUI&color=purple&logo=github-pages"></a> &ensp;
</div>

-----

This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring Hunyuan-DiT. You can find more visualizations on our [project page](https://dit.hunyuan.tencent.com/).

> [**Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding**](https://arxiv.org/abs/2405.08748) <br>

> [**DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation**](https://arxiv.org/abs/2403.08857) <br>

## 🔥🔥🔥 News!!
* Dec 17, 2024: :tada: Optimize Lora training with `refined grad checkpoint` and `low-bit optimizer`. Just use `--lowbit-opt` to get started.
* Sep 13, 2024: 🎉 IPAdapter is officially supported by HunYuanDiT. Document for it: [./ipadapter](./ipadapter). And scaled attention is utilized to replace flash attention on V100 GPUs.
* Aug 26, 2024, 🎉 HunYuanDIT Controlnet and LoRA are officially supported by ComfyUI. Document for it: [./comfyui](./comfyui)
* Jul 15, 2024: 🚀 HunYuanDiT and Shakker.Ai have jointly launched a fine-tuning event based on the HunYuanDiT 1.2 model. By publishing a lora or fine-tuned model based on HunYuanDiT, you can earn up to $230 bonus from Shakker.Ai. See [Shakker.Ai](https://www.shakker.ai/activitys/shaker-the-world-hunyuan) for more details.
* Jul 15, 2024: :tada: Update ComfyUI to support standardized workflows and compatibility with weights from t2i module and Lora training for versions 1.1/1.2, as well as those trained by Kohya or the official script. 
* Jul 15, 2024: :zap: We offer Docker environments for CUDA 11/12, allowing you to bypass complex installations and play with a single click! See [dockers](#installation-guide-for-linux) for details. 
* Jul 08, 2024: :tada: HYDiT-v1.2 version is released. Please check [HunyuanDiT-v1.2](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2) and [Distillation-v1.2](https://huggingface.co/Tencent-Hunyuan/Distillation-v1.2) for more details.
* Jul 03, 2024: :tada: Kohya-hydit version now available for v1.1 and v1.2 models, with GUI for inference. Official Kohya version is under review. See [kohya](./kohya_ss-hydit) for details.
* Jun 27, 2024: :art: Hunyuan-Captioner is released, providing fine-grained caption for training data. See [mllm](./mllm) for details.
* Jun 27, 2024: :tada: Support LoRa and ControlNet in diffusers. See [diffusers](./diffusers) for details.
* Jun 27, 2024: :tada: 6GB GPU VRAM Inference scripts are released. See [lite](./lite) for details.
* Jun 19, 2024: :tada: ControlNet is released, supporting canny, pose and depth control. See [training/inference codes](#controlnet) for details.
* Jun 13, 2024: :zap: HYDiT-v1.1 version is released, which mitigates the issue of image oversaturation and alleviates the watermark issue. Please check [HunyuanDiT-v1.1](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1) and 
[Distillation-v1.1](https://huggingface.co/Tencent-Hunyuan/Distillation-v1.1) for more details.
* Jun 13, 2024: :truck: The training code is released, offering [full-parameter training](#full-parameter-training) and [LoRA training](#lora).
* Jun 06, 2024: :tada: Hunyuan-DiT is now available in ComfyUI. Please check [ComfyUI](#using-comfyui) for more details.
* Jun 06, 2024: 🚀 We introduce Distillation version for Hunyuan-DiT acceleration, which achieves **50%** acceleration on NVIDIA GPUs. Please check [Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.
* Jun 05, 2024: 🤗 Hunyuan-DiT is now available in 🤗 Diffusers! Please check the [example](#using--diffusers) below.
* Jun 04, 2024: :globe_with_meridians: Support Tencent Cloud links to download the pretrained models! Please check the [links](#-download-pretrained-models) below.
* May 22, 2024: 🚀 We introduce TensorRT version for Hunyuan-DiT acceleration, which achieves **47%** acceleration on NVIDIA GPUs. Please check [TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for instructions.
* May 22, 2024: 💬 We support demo running multi-turn text2image generation now. Please check the [script](#using-gradio) below.

## 🤖 Try it on the web

Welcome to our web-based [**Tencent Hunyuan Bot**](https://hunyuan.tencent.com/bot/chat), where you can explore our innovative products! Just input the suggested prompts below or any other **imaginative prompts containing drawing-related keywords** to activate the Hunyuan text-to-image generation feature.  Unleash your creativity and create any picture you desire, **all for free!**

You can use simple prompts similar to natural language text

> 画一只穿着西装的猪
>
> draw a pig in a suit
>
> 生成一幅画,赛博朋克风,跑车
> 
> generate a painting, cyberpunk style, sports car

or multi-turn language interactions to create the picture. 

> 画一个木制的鸟
>
> draw a wooden bird
>
> 变成玻璃的
>
> turn into glass


## 🤗 Community Contribution Leaderboard
1. By [@TTPlanetPig](https://github.com/TTPlanetPig)
   - HunyuanDIT_v1.2 ControlNet models
     - Inpaint controlnet: https://huggingface.co/TTPlanet/HunyuanDiT_Controlnet_inpainting
     - Tile controlnet: https://huggingface.co/TTPlanet/HunyuanDiT_Controlnet_tile
     - Lineart controlnet: https://huggingface.co/TTPlanet/HunyuanDiT_Controlnet_lineart
   - HunyuanDIT_v1.2 ComfyUI nodes
     - Comfyui_TTP_CN_Preprocessor: https://github.com/TTPlanetPig/Comfyui_TTP_CN_Preprocessor
     - Comfyui_TTP_Toolset: https://github.com/TTPlanetPig/Comfyui_TTP_Toolset

2. By [@sdbds](https://github.com/sdbds) (bilibili up [青龙圣者](https://space.bilibili.com/219296))
   - Kohya_ss-hydit train tools: https://github.com/zml-ai/HunyuanDIT-PRE/tree/main/kohya_ss-hydit

3. By [@CrazyBoyM](https://github.com/CrazyBoyM) (bilibili up [飞鸟白菜](https://space.bilibili.com/291593914))
   - ComfyUI support for HunyuanDIT_v1.2 Controlnet: https://github.com/comfyanonymous/ComfyUI/pull/4245
    
4. By [@L_A_X](https://huggingface.co/Laxhar/Freeway_Animation_HunYuan_Demo)
   - HunyuanDIT_v1.2 base model for anime
     - Original hf: https://huggingface.co/Laxhar/Freeway_Animation_HunYuan_Demo
     - Converted ComfyUI model: https://huggingface.co/comfyanonymous/Freeway_Animation_Hunyuan_Demo_ComfyUI_Converted
    
## 📑 Open-source Plan

- Hunyuan-DiT (Text-to-Image Model)
  - [x] Inference 
  - [x] Checkpoints 
  - [x] Distillation Version
  - [x] TensorRT Version
  - [x] Training
  - [x] Lora
  - [x] Controlnet (Pose, Canny, Depth)
  - [x] 6GB GPU VRAM Inference 
  - [x] IP-adapter
  - [ ] Hunyuan-DiT-S checkpoints (0.7B model)
- Mllm
  - Hunyuan-Captioner (Re-caption the raw image-text pairs)
    - [x] Inference
  - [Hunyuan-DialogGen](https://github.com/Centaurusalpha/DialogGen) (Prompt Enhancement Model)
    - [x] Inference
- [X] Web Demo (Gradio) 
- [x] Multi-turn T2I Demo (Gradio)
- [X] Cli Demo 
- [X] ComfyUI
- [X] Diffusers
- [X] Kohya
- [ ] WebUI


## Contents
- [Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding](#hunyuan-dit--a-powerful-multi-resolution-diffusion-transformer-with-fine-grained-chinese-understanding)
  - [🔥🔥🔥 News!!](#-news)
  - [🤖 Try it on the web](#-try-it-on-the-web)
  - [🤗 Community Contribution Leaderboard](#-community-contribution-leaderboard)
  - [📑 Open-source Plan](#-open-source-plan)
  - [Contents](#contents)
  - [Abstract](#abstract)
  - [🎉 Hunyuan-DiT Key Features](#-hunyuan-dit-key-features)
    - [Chinese-English Bilingual DiT Architecture](#chinese-english-bilingual-dit-architecture)
    - [Multi-turn Text2Image Generation](#multi-turn-text2image-generation)
  - [📈 Comparisons](#-comparisons)
  - [🎥 Visualization](#-visualization)
  - [📜 Requirements](#-requirements)
  - [🛠️ Dependencies and Installation](#️-dependencies-and-installation)
    - [Installation Guide for Linux](#installation-guide-for-linux)
  - [🧱 Download Pretrained Models](#-download-pretrained-models)
        - [1. Using HF-Mirror](#1-using-hf-mirror)
        - [2. Resume Download](#2-resume-download)
  - [:truck: Training](#truck-training)
    - [Data Preparation](#data-preparation)
    - [Full-parameter Training](#full-parameter-training)
    - [LoRA](#lora)
  - [🔑 Inference](#-inference)
    - [6GB GPU VRAM Inference](#6gb-gpu-vram-inference)
    - [Using Gradio](#using-gradio)
    - [Using 🤗 Diffusers](#using--diffusers)
    - [Using Command Line](#using-command-line)
    - [More Configurations](#more-configurations)
    - [Using ComfyUI](#using-comfyui)
    - [Using Kohya](#using-kohya)
    - [Using Previous versions](#using-previous-versions)
  - [:building\_construction: Adapter](#building_construction-adapter)
    - [ControlNet](#controlnet)
    - [IP-Adapter](#IP-Adapter)
  - [:art: Hunyuan-Captioner](#art-hunyuan-captioner)
    - [Examples](#examples)
    - [Instructions](#instructions)
    - [Inference](#inference)
    - [Gradio](#gradio)
  - [🚀 Acceleration (for Linux)](#-acceleration-for-linux)
  - [🔗 BibTeX](#-bibtex)
  - [Start History](#start-history)

## **Abstract**

We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context.
Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.


## 🎉 **Hunyuan-DiT Key Features**
### **Chinese-English Bilingual DiT Architecture**
Hunyuan-DiT is a diffusion model in the latent space, as depicted in figure below. Following the Latent Diffusion Model, we use a pre-trained Variational Autoencoder (VAE) to compress the images into low-dimensional latent spaces and train a diffusion model to learn the data distribution with diffusion models. Our diffusion model is parameterized with a transformer. To encode the text prompts, we leverage a combination of pre-trained bilingual (English and Chinese) CLIP and multilingual T5 encoder.
<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/framework.png"  height=450>
</p>

### Multi-turn Text2Image Generation
Understanding natural language instructions and performing multi-turn interaction with users are important for a
text-to-image system. It can help build a dynamic and iterative creation process that bring the user’s idea into reality
step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round
conversations and image generation. We train MLLM to understand the multi-round user dialogue
and output the new text prompt for image generation.
<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/mllm.png"  height=300>
</p>

## 📈 Comparisons
In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.

<p align="center">
<table> 
<thead> 
<tr> 
    <th rowspan="2">Model</th> <th rowspan="2">Open Source</th> <th>Text-Image Consistency (%)</th> <th>Excluding AI Artifacts (%)</th> <th>Subject Clarity (%)</th> <th rowspan="2">Aesthetics (%)</th> <th rowspan="2">Overall (%)</th> 
</tr> 
</thead> 
<tbody> 
<tr> 
    <td>SDXL</td> <td></td> <td>64.3</td> <td>60.6</td> <td>91.1</td> <td>76.3</td> <td>42.7</td> 
</tr> 
<tr> 
    <td>PixArt-α</td> <td></td> <td>68.3</td> <td>60.9</td> <td>93.2</td> <td>77.5</td> <td>45.5</td> 
</tr> 
<tr> 
    <td>Playground 2.5</td> <td></td> <td>71.9</td> <td>70.8</td> <td>94.9</td> <td>83.3</td> <td>54.3</td> 
</tr> 

<tr> 
    <td>SD 3</td> <td>&#10008</td> <td>77.1</td> <td>69.3</td> <td>94.6</td> <td>82.5</td> <td>56.7</td> 
    
</tr> 
<tr> 
    <td>MidJourney v6</td><td>&#10008</td> <td>73.5</td> <td>80.2</td> <td>93.5</td> <td>87.2</td> <td>63.3</td> 
</tr> 
<tr> 
    <td>DALL-E 3</td><td>&#10008</td> <td>83.9</td> <td>80.3</td> <td>96.5</td> <td>89.4</td> <td>71.0</td> 
</tr> 
<tr style="font-weight: bold; background-color: #f2f2f2;"> 
    <td>Hunyuan-DiT</td><td></td> <td>74.2</td> <td>74.3</td> <td>95.4</td> <td>86.6</td> <td>59.0</td> 
</tr>
</tbody>
</table>
</p>

## 🎥 Visualization

* **Chinese Elements**
<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/chinese elements understanding.png"  height=220>
</p>

* **Long Text Input**


<p align="center">
  <img src="https://raw.githubusercontent.com/Tencent/HunyuanDiT/main/asset/long text understanding.png"  height=310>
</p>

* **Multi-turn Text2Image Generation**

https://github.com/Tencent/tencent.github.io/assets/27557933/94b4dcc3-104d-44e1-8bb2-dc55108763d1



---

## 📜 Requirements

This repo consists of DialogGen (a prompt enhancement model) and Hunyuan-DiT (a text-to-image model).

The following table shows the requirements for running the models (batch size = 1):

|          Model          | --load-4bit (DialogGen) | GPU Peak Memory |       GPU       |
|:-----------------------:|:-----------------------:|:---------------:|:---------------:|
| DialogGen + Hunyuan-DiT |            ✘            |       32G       |      A100       |
| DialogGen + Hunyuan-DiT |            ✔            |       22G       |      A100       |
|       Hunyuan-DiT       |            -            |       11G       |      A100       |
|       Hunyuan-DiT       |            -            |       14G       | RTX3090/RTX4090 |

* An NVIDIA GPU with CUDA support is required. 
  * We have tested V100 and A100 GPUs.
  * **Minimum**: The minimum GPU memory required is 11GB.
  * **Recommended**: We recommend using a GPU with 32GB of memory for better generation quality.
* Tested operating system: Linux

## 🛠️ Dependencies and Installation

Begin by cloning the repository:
```shell
git clone https://github.com/tencent/HunyuanDiT
cd HunyuanDiT
```

### Installation Guide for Linux

We provide an `environment.yml` file for setting up a Conda environment.
Conda's installation instructions are available [here](https://docs.anaconda.com/free/miniconda/index.html).

We recommend CUDA versions 11.7 and 12.0+.

```shell
# 1. Prepare conda environment
conda env create -f environment.yml

# 2. Activate the environment
conda activate HunyuanDiT

# 3. Install pip dependencies
python -m pip install -r requirements.txt

# 4. Install flash attention v2 for acceleration (requires CUDA 11.6 or above)
python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.1.2.post3
```

Additionally, you can also use docker to set up the environment.
```shell
# 1. Use the following link to download the docker image tar file.
# For CUDA 12
wget https://dit.hunyuan.tencent.com/download/HunyuanDiT/hunyuan_dit_cu12.tar
# For CUDA 11
wget https://dit.hunyuan.tencent.com/download/HunyuanDiT/hunyuan_dit_cu11.tar

# 2. Import the docker tar file and show the image meta information
# For CUDA 12
docker load -i hunyuan_dit_cu12.tar
# For CUDA 11
docker load -i hunyuan_dit_cu11.tar  

docker image ls

# 3. Run the container based on the image
docker run -dit --gpus all --init --net=host --uts=host --ipc=host --name hunyuandit --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged  docker_image_tag
```

## 🧱 Download Pretrained Models
To download the model, first install the huggingface-cli. (Detailed instructions are available [here](https://huggingface.co/docs/huggingface_hub/guides/cli).)

```shell
python -m pip install "huggingface_hub[cli]"
```

Then download the model using the following commands:

```shell
# Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.
mkdir ckpts
# Use the huggingface-cli tool to download the model.
# The download time may vary from 10 minutes to 1 hour depending on network conditions.
huggingface-cli download Tencent-Hunyuan/HunyuanDiT-v1.2 --local-dir ./ckpts
```

<details>
<summary>💡Tips for using huggingface-cli (network problem)</summary>

##### 1. Using HF-Mirror

If you encounter slow download speeds in China, you can try a mirror to speed up the download process. For example,

```shell
HF_ENDPOINT=https://hf-mirror.com huggingface-cli download Tencent-Hunyuan/HunyuanDiT-v1.2 --local-dir ./ckpts
```

##### 2. Resume Download

`huggingface-cli` supports resuming downloads. If the download is interrupted, you can just rerun the download 
command to resume the download process.

Note: If an `No such file or directory: 'ckpts/.huggingface/.gitignore.lock'` like error occurs during the download 
process, you can ignore the error and rerun the download command.

</details>

---

All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository [here](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT).

|       Model       | #Params |                                        Huggingface Download URL                                        |                                   Tencent Cloud Download URL                                   |
|:-----------------:|:-------:|:------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------:|
|        mT5        |  1.6B   |               [mT5](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/mt5)               |               [mT5](https://dit.hunyuan.tencent.com/download/HunyuanDiT/mt5.zip)               |
|       CLIP        |  350M   |       [CLIP](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/clip_text_encoder)        |       [CLIP](https://dit.hunyuan.tencent.com/download/HunyuanDiT/clip_text_encoder.zip)        |
|     Tokenizer     |  -      |         [Tokenizer](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/tokenizer)         |         [Tokenizer](https://dit.hunyuan.tencent.com/download/HunyuanDiT/tokenizer.zip)         |
|     DialogGen     |  7.0B   |           [DialogGen](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/dialoggen)           |         [DialogGen](https://dit.hunyuan.tencent.com/download/HunyuanDiT/dialoggen.zip)         |
| sdxl-vae-fp16-fix |   83M   | [sdxl-vae-fp16-fix](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/sdxl-vae-fp16-fix) | [sdxl-vae-fp16-fix](https://dit.hunyuan.tencent.com/download/HunyuanDiT/sdxl-vae-fp16-fix.zip) |
| Hunyuan-DiT-v1.0  |  1.5B   |          [Hunyuan-DiT](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT/tree/main/t2i/model)          |       [Hunyuan-DiT-v1.0](https://dit.hunyuan.tencent.com/download/HunyuanDiT/model.zip)        |
| Hunyuan-DiT-v1.1  |  1.5B   |     [Hunyuan-DiT-v1.1](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1/tree/main/t2i/model)     |     [Hunyuan-DiT-v1.1](https://dit.hunyuan.tencent.com/download/HunyuanDiT/model-v1_1.zip)     |
| Hunyuan-DiT-v1.2  |  1.5B   |     [Hunyuan-DiT-v1.2](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2/tree/main/t2i/model)     |     [Hunyuan-DiT-v1.2](https://dit.hunyuan.tencent.com/download/HunyuanDiT/model-v1_2.zip)     |
|     Data demo     |  -      |                                                   -                                                    |         [Data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip)         |

## :truck: Training

### Data Preparation

  Refer to the commands below to prepare the training data. 
  
  1. Install dependencies
  
      We offer an efficient data management library, named IndexKits, supporting the management of reading hundreds of millions of data during training, see more in [docs](./IndexKits/README.md).
      ```shell
      # 1 Install dependencies
      cd HunyuanDiT
      pip install -e ./IndexKits
     ```
  2. Data download 
  
     Feel free to download the [data demo](https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip).
     ```shell
     # 2 Data download
     wget -O ./dataset/data_demo.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/data_demo.zip
     unzip ./dataset/data_demo.zip -d ./dataset
     mkdir ./dataset/porcelain/arrows ./dataset/porcelain/jsons
     ```
  3. Data conversion 
  
     Create a CSV file for training data with the fields listed in the table below.
    
     |    Fields       | Required  |  Description     |   Example   |
     |:---------------:| :------:  |:----------------:|:-----------:|
     |   `image_path`  | Required  |  image path               |     `./dataset/porcelain/images/0.png`        | 
     |   `text_zh`     | Required  |    text               |  青花瓷风格,一只蓝色的鸟儿站在蓝色的花瓶上,周围点缀着白色花朵,背景是白色 | 
     |   `md5`         | Optional  |    image md5 (Message Digest Algorithm 5)  |    `d41d8cd98f00b204e9800998ecf8427e`         | 
     |   `width`       | Optional  |    image width    |     `1024 `       | 
     |   `height`      | Optional  |    image height   |    ` 1024 `       | 
     
     > ⚠️ Optional fields like MD5, width, and height can be omitted. If omitted, the script below will automatically calculate them. This process can be time-consuming when dealing with large-scale training data.
  
     We utilize [Arrow](https://github.com/apache/arrow) for training data format, offering a standard and efficient in-memory data representation. A conversion script is provided to transform CSV files into Arrow format.
     ```shell  
     # 3 Data conversion 
     python ./hydit/data_loader/csv2arrow.py ./dataset/porcelain/csvfile/image_text.csv ./dataset/porcelain/arrows 1
     ```
  
  4. Data Selection and Configuration File Creation 
     
      We configure the training data through YAML files. In these files, you can set up standard data processing strategies for filtering, copying, deduplicating, and more regarding the training data. For more details, see [./IndexKits](IndexKits/docs/MakeDataset.md).
  
      For a sample file, please refer to [file](./dataset/yamls/porcelain.yaml). For a full parameter configuration file, see [file](./IndexKits/docs/MakeDataset.md).
  
     
  5. Create training data index file using YAML file.
    
     ```shell
      # Single Resolution Data Preparation
      idk base -c dataset/yamls/porcelain.yaml -t dataset/porcelain/jsons/porcelain.json
   
      # Multi Resolution Data Preparation     
      idk multireso -c dataset/yamls/porcelain_mt.yaml -t dataset/porcelain/jsons/porcelain_mt.json
      ```
   
  The directory structure for `porcelain` dataset is:

  ```shell
   cd ./dataset
  
   porcelain
      ├──images/  (image files)
      │  ├──0.png
      │  ├──1.png
      │  ├──......
      ├──csvfile/  (csv files containing text-image pairs)
      │  ├──image_text.csv
      ├──arrows/  (arrow files containing all necessary training data)
      │  ├──00000.arrow
      │  ├──00001.arrow
      │  ├──......
      ├──jsons/  (final training data index files which read data from arrow files during training)
      │  ├──porcelain.json
      │  ├──porcelain_mt.json
   ```

### Full-parameter Training
  
  **Requirement:** 
  1. The minimum requriment is a single GPU with at least 20GB memory, but we recommend to use a GPU with about 30 GB memory to avoid host memory offloading. 
  2. Additionally, we encourage users to leverage the multiple GPUs across different nodes to speed up training on large datasets. 
  
  **Notice:**
  1. Personal users can also use the light-weight Kohya to finetune the model with about 16 GB memory. Currently, we are trying to further reduce the memory usage of our industry-level framework for personal users. 
  2. If you have enough GPU memory, please try to remove  `--cpu-offloading` or `--gradient-checkpointing` for less time costs.

  Specifically for distributed training, you have the flexibility to control **single-node** / **multi-node** training by adjusting parameters such as `--hostfile` and `--master_addr`. For more details, see [link](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node).

  ```shell
  # Single Resolution Training
  PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain.json
  
  # Multi Resolution Training
  PYTHONPATH=./ sh hydit/train.sh --index-file dataset/porcelain/jsons/porcelain_mt.json --multireso --reso-step 64
  
  # Training with old version of HunyuanDiT (<= v1.1)
  PYTHONPATH=./ sh hydit/train_v1.1.sh --index-file dataset/porcelain/jsons/porcelain.json
  ```

  After checkpoints are saved, you can use the following command to evaluate the model.
  ```shell
  # Inference
    #   You should replace the 'log_EXP/xxx/checkpoints/final.pt' with your actual path.
  python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只可爱的哈士奇" --no-enhance --dit-weight log_EXP/xxx/checkpoints/final.pt --load-key module
  
  # Old version of HunyuanDiT (<= v1.1)
  #   You should replace the 'log_EXP/xxx/checkpoints/final.pt' with your actual path.
  python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只可爱的哈士奇" --model-root ./HunyuanDiT-v1.1 --use-style-cond --size-cond 1024 1024 --beta-end 0.03 --no-enhance --dit-weight log_EXP/xxx/checkpoints/final.pt --load-key module
  ```

### LoRA



We provide training and inference scripts for LoRA, detailed in the [./lora](./lora/README.md). 

  ```shell
  # Training for porcelain LoRA.
  PYTHONPATH=./ sh lora/train_lora_with_fa.sh --index-file dataset/porcelain/jsons/porcelain.json
  
  # Inference using trained LORA weights.
  python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只小狗"  --no-enhance --lora-ckpt log_EXP/001-lora_porcelain_ema_rank64/checkpoints/0001000.pt
  ```
 If you can't install flash_attn, use code:
  ```shell
  # Training for porcelain LoRA.
  PYTHONPATH=./ sh lora/train_lora.sh --index-file dataset/porcelain/jsons/porcelain.json
  
  # Inference using trained LORA weights.
  python sample_t2i.py --infer-mode torch --prompt "青花瓷风格,一只小狗"  --no-enhance --lora-ckpt log_EXP/001-lora_porcelain_ema_rank64/checkpoints/0001000.pt
  ```
 We offer two types of trained LoRA weights for `porcelain` and `jade`, see details at [links](https://huggingface.co/Tencent-Hunyuan/HYDiT-LoRA)
  ```shell
  cd HunyuanDiT
  # Use the huggingface-cli tool to download the model.
  huggingface-cli download Tencent-Hunyuan/HYDiT-LoRA --local-dir ./ckpts/t2i/lora
  
  # Quick start
  python sample_t2i.py --infer-mode fa --prompt "青花瓷风格,一只猫在追蝴蝶"  --no-enhance --load-key ema --lora-ckpt ./ckpts/t2i/lora/porcelain
  ```
 <table>
  <tr>
    <td colspan="4" align="center">Examples of training data</td>
  </tr>
  
  <tr>
    <td align="center"><img src="lora/asset/porcelain/train/0.png" alt="Image 0" width="200"/></td>
    <td align="center"><img src="lora/asset/porcelain/train/1.png" alt="Image 1" width="200"/></td>
    <td align="center"><img src="lora/asset/porcelain/train/2.png" alt="Image 2" width="200"/></td>
    <td align="center"><img src="lora/asset/porcelain/train/3.png" alt="Image 3" width="200"/></td>
  </tr>
  <tr>
    <td align="center">青花瓷风格,一只蓝色的鸟儿站在蓝色的花瓶上,周围点缀着白色花朵,背景是白色 (Porcelain style, a blue bird stands on a blue vase, surrounded by white flowers, with a white background.
)</td>
    <td align="center">青花瓷风格,这是一幅蓝白相间的陶瓷盘子,上面描绘着一只狐狸和它的幼崽在森林中漫步,背景是白色 (Porcelain style, this is a blue and white ceramic plate depicting a fox and its cubs strolling in the forest, with a white background.)</td>
    <td align="center">青花瓷风格,在黑色背景上,一只蓝色的狼站在蓝白相间的盘子上,周围是树木和月亮 (Porcelain style, on a black background, a blue wolf stands on a blue and white plate, surrounded by trees and the moon.)</td>
    <td align="center">青花瓷风格,在蓝色背景上,一只蓝色蝴蝶和白色花朵被放置在中央 (Porcelain style, on a blue background, a blue butterfly and white flowers are placed in the center.)</td>
  </tr>
  <tr>
    <td colspan="4" align="center">Examples of inference results</td>
  </tr>
  <tr>
    <td align="center"><img src="lora/asset/porcelain/inference/0.png" alt="Image 4" width="200"/></td>
    <td align="center"><img src="lora/asset/porcelain/inference/1.png" alt="Image 5" width="200"/></td>
    <td align="center"><img src="lora/asset/porcelain/inference/2.png" alt="Image 6" width="200"/></td>
    <td align="center"><img src="lora/asset/porcelain/inference/3.png" alt="Image 7" width="200"/></td>
  </tr>
  <tr>
    <td align="center">青花瓷风格,苏州园林 (Porcelain style,  Suzhou Gardens.)</td>
    <td align="center">青花瓷风格,一朵荷花 (Porcelain style,  a lotus flower.)</td>
    <td align="center">青花瓷风格,一只羊(Porcelain style, a sheep.)</td>
    <td align="center">青花瓷风格,一个女孩在雨中跳舞(Porcelain style, a girl dancing in the rain.)</td>
  </tr>
  
</table>


## 🔑 Inference

### 6GB GPU VRAM Inference
Running HunyuanDiT in under 6GB GPU VRAM is available now based on [diffusers](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hunyuandit). Here we provide instructions and demo for your quick start.

> The 6GB version supports Nvidia Ampere architecture series graphics cards such as RTX 3070/3080/4080/4090, A100, and so on.

The only thing you need do is to install the following library:

```bash
pip install -U bitsandbytes
pip install git+https://github.com/huggingface/diffusers
pip install torch==2.0.0
```

Then you can enjoy your HunyuanDiT text-to-image journey under 6GB GPU VRAM directly!

Here is a demo for you.

```bash
cd HunyuanDiT

# Quick start
model_id=Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers-Distilled
prompt=一个宇航员在骑马
infer_steps=50
guidance_scale=6
python3 lite/inference.py ${model_id} ${prompt} ${infer_steps} ${guidance_scale}
```

More details can be found in [./lite](lite/README.md).


### Using Gradio

Make sure the conda environment is activated before running the following command.

```shell
# By default, we start a Chinese UI. Using Flash Attention for acceleration.
python app/hydit_app.py --infer-mode fa

# Using special port and host
python app/hydit_app.py --infer-mode fa --server_name 0.0.0.0 --server_port 443 --load-key distill

# You can disable the enhancement model if the GPU memory is insufficient.
# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag. 
python app/hydit_app.py --no-enhance --infer-mode fa

# Start with English UI
python app/hydit_app.py --lang en --infer-mode fa

# Start a multi-turn T2I generation UI. 
# If your GPU memory is less than 32GB, use '--load-4bit' to enable 4-bit quantization, which requires at least 22GB of memory.
python app/multiTurnT2I_app.py --infer-mode fa
```
Then the demo can be accessed through http://0.0.0.0:443. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.

### Using 🤗 Diffusers

Please install PyTorch version 2.0 or higher in advance to satisfy the requirements of the specified version of the diffusers library.  

Install 🤗 diffusers, ensuring that the version is at least 0.28.1:

```shell
pip install git+https://github.com/huggingface/diffusers.git
```
or
```shell
pip install diffusers
```

You can generate images with both Chinese and English prompts using the following Python script:
```py
import torch
from diffusers import HunyuanDiTPipeline

pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers", torch_dtype=torch.float16)
pipe.to("cuda")

# You may also use English prompt as HunyuanDiT supports both English and Chinese
# prompt = "An astronaut riding a horse"
prompt = "一个宇航员在骑马"
image = pipe(prompt).images[0]
```
You can use our distilled model to generate images even faster:

```py
import torch
from diffusers import HunyuanDiTPipeline

pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers-Distilled", torch_dtype=torch.float16)
pipe.to("cuda")

# You may also use English prompt as HunyuanDiT supports both English and Chinese
# prompt = "An astronaut riding a horse"
prompt = "一个宇航员在骑马"
image = pipe(prompt, num_inference_steps=25).images[0]
```
More details can be found in [HunyuanDiT-v1.2-Diffusers-Distilled](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers-Distilled)

**More functions:** For other functions like LoRA and ControlNet, please have a look at the README of [./diffusers](diffusers).

### Using Command Line

We provide several commands to quick start: 

```shell
# Only Text-to-Image. Flash Attention mode
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚" --no-enhance

# Generate an image with other image sizes.
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚" --image-size 1280 768

# Prompt Enhancement + Text-to-Image. DialogGen loads with 4-bit quantization, but it may loss performance.
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚"  --load-4bit

```

More example prompts can be found in [example_prompts.txt](example_prompts.txt)

### More Configurations

We list some more useful configurations for easy usage:

|    Argument     |  Default  |                     Description                     |
|:---------------:|:---------:|:---------------------------------------------------:|
|   `--prompt`    |   None    |        The text prompt for image generation         |
| `--image-size`  | 1024 1024 |           The size of the generated image           |
|    `--seed`     |    42     |        The random seed for generating images        |
| `--infer-steps` |    100    |          The number of steps for sampling           |
|  `--negative`   |     -     |      The negative prompt for image generation       |
| `--infer-mode`  |   torch   |       The inference mode (torch, fa, or trt)        |
|   `--sampler`   |   ddpm    |    The diffusion sampler (ddpm, ddim, or dpmms)     |
| `--no-enhance`  |   False   |        Disable the prompt enhancement model         |
| `--model-root`  |   ckpts   |     The root directory of the model checkpoints     |
|  `--load-key`   |    ema    | Load the student model or EMA model (ema or module) |
|  `--load-4bit`  |   Fasle   |     Load DialogGen model with 4bit quantization     |

### Using ComfyUI

- Support two workflows: Standard ComfyUI and Diffusers Wrapper, with the former being recommended.
- Support HunyuanDiT-v1.1 and v1.2.
- Support module, lora and clip lora models trained by Kohya.
- Support module, lora models trained by HunyunDiT official training scripts.
- ControlNet support.

More details can be found in [./comfyui](comfyui/README.md)

### Using Kohya

We support custom codes for kohya_ss GUI, and sd-scripts training codes for HunyuanDiT.
![dreambooth](kohya_ss-hydit/img/dreambooth.png)
More details can be found in [./kohya_ss-hydit](kohya_ss-hydit/README.md)

### Using Previous versions

* **Hunyuan-DiT <= v1.1**

```shell
# ============================== v1.1 ==============================
# Download the model
huggingface-cli download Tencent-Hunyuan/HunyuanDiT-v1.1 --local-dir ./HunyuanDiT-v1.1
# Inference with the model
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚" --model-root ./HunyuanDiT-v1.1 --use-style-cond --size-cond 1024 1024 --beta-end 0.03

# ============================== v1.0 ==============================
# Download the model
huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./HunyuanDiT-v1.0
# Inference with the model
python sample_t2i.py --infer-mode fa --prompt "渔舟唱晚" --model-root ./HunyuanDiT-v1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03
```

## :building_construction: Adapter

### ControlNet

We provide training scripts for ControlNet, detailed in the [./controlnet](./controlnet/README.md). 

  ```shell
  # Training for canny ControlNet.
  PYTHONPATH=./ sh hydit/train_controlnet.sh
  ```
 We offer three types of trained ControlNet weights for `canny` `depth` and `pose`, see details at [links](https://huggingface.co/Tencent-Hunyuan/HYDiT-ControlNet)
  ```shell
  cd HunyuanDiT
  # Use the huggingface-cli tool to download the model.
  # We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them.
  huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.2 --local-dir ./ckpts/t2i/controlnet
  huggingface-cli download Tencent-Hunyuan/Distillation-v1.2 ./pytorch_model_distill.pt --local-dir ./ckpts/t2i/model
  
  # Quick start
  python3 sample_controlnet.py --infer-mode fa --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0
  
  ```
 
 <table>
  <tr>
    <td colspan="3" align="center">Condition Input</td>
  </tr>
  
   <tr>
    <td align="center">Canny ControlNet </td>
    <td align="center">Depth ControlNet </td>
    <td align="center">Pose ControlNet </td>
  </tr>

  <tr>
    <td align="center">在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围<br>(At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere.) </td>
    <td align="center">在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果<br>(In the dense forest, a black and white panda sits quietly among the green trees and red flowers, surrounded by mountains and oceans. The background is a daytime forest with ample light. The photo uses a close-up, eye-level, and centered composition to create a realistic effect.) </td>
    <td align="center">在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围<br>(In the daytime forest, an Asian woman wearing a green shirt stands beside an elephant. The photo uses a medium shot, eye-level, and centered composition to create a realistic effect. This picture embodies the character photography culture and conveys a serene atmosphere.) </td>
  </tr>

  <tr>
    <td align="center"><img src="controlnet/asset/input/canny.jpg" alt="Image 0" width="200"/></td>
    <td align="center"><img src="controlnet/asset/input/depth.jpg" alt="Image 1" width="200"/></td>
    <td align="center"><img src="controlnet/asset/input/pose.jpg" alt="Image 2" width="200"/></td>
    
  </tr>
  
  <tr>
    <td colspan="3" align="center">ControlNet Output</td>
  </tr>

  <tr>
    <td align="center"><img src="controlnet/asset/output/canny.jpg" alt="Image 3" width="200"/></td>
    <td align="center"><img src="controlnet/asset/output/depth.jpg" alt="Image 4" width="200"/></td>
    <td align="center"><img src="controlnet/asset/output/pose.jpg" alt="Image 5" width="200"/></td>
  </tr>
 
</table>

### IP-Adapter
  We provide training scripts for IP-Adapter, detailed in the [./ipadapter](./ipadapter/README.md). 
  ```shell
  # Training for IP-Adapter.
  PYTHONPATH=./ sh hydit/train_ipadapter.sh
  ```
   We offer  trained IP-Adapter weights, see details at [links](https://huggingface.co/Tencent-Hunyuan/HYDiT-IP-Adapter)
  ```shell
  cd HunyuanDiT
  # Use the huggingface-cli tool to download the model.
  # We recommend using module weights as the base model for IP-Adapter inference, as our provided pretrained weights are trained on them.
  huggingface-cli download Tencent-Hunyuan/IP-Adapter ipa.pt --local-dir ./ckpts/t2i/model
  huggingface-cli download Tencent-Hunyuan/IP-Adapter clip_img_encoder.pt  --local-dir ./ckpts/t2i/model/clip_img_encoder
  
  # Quick start
  python3 sample_ipadapter.py  --infer-mode fa --ref-image-path ipadapter/asset/input/tiger.png --i-scale 1.0 --prompt 一只老虎在海洋中游泳,背景是海洋。构图方式是居中构图,呈现了动漫风格和文化,营造了平静的氛围。 --infer-steps 100 --is-ipa True --load-key distill
  ```

Examples of ref input and IP-Adapter results are as follows:
<table>
  <tr>
    <td colspan="3" align="center">Ref Input</td>
  </tr>
  


  

  <tr>
    <td align="center"><img src="ipadapter/asset/input/tiger.png" alt="Image 0" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/input/beauty.png" alt="Image 1" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/input/xunyicao.png" alt="Image 2" width="200"/></td>
    
  </tr>
  
  <tr>
    <td colspan="3" align="center">IP-Adapter Output</td>
  </tr>

  <tr>
    <td align="center">一只老虎在奔跑。<br>(A tiger running.) </td>
    <td align="center">一个卡通美女,抱着一只小猪。<br>(A cartoon beauty holding a little pig.) </td>
    <td align="center">一片紫色薰衣草地。<br>(A purple lavender field.) </td>
  </tr>

  <tr>
    <td align="center"><img src="ipadapter/asset/output/tiger_run.png" alt="Image 3" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/output/beauty_pig.png" alt="Image 4" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/output/xunyicao_res.png" alt="Image 5" width="200"/></td>
  </tr>

  <tr>
    <td align="center">一只老虎在看书。<br>(A tiger is reading a book.) </td>
    <td align="center">一个卡通美女,穿着绿色衣服。<br>(A cartoon beauty wearing green clothes.) </td>
    <td align="center">一片紫色薰衣草地,有一只可爱的小狗。<br>(A purple lavender field with a cute puppy.) </td>
  </tr>

  <tr>
    <td align="center"><img src="ipadapter/asset/output/tiger_book.png" alt="Image 3" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/output/beauty_green_cloth.png" alt="Image 4" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/output/xunyicao_dog.png" alt="Image 5" width="200"/></td>
  </tr>

  <tr>
    <td align="center">一只老虎在咆哮。<br>(A tiger is roaring.) </td>
    <td align="center">一个卡通美女,戴着墨镜。<br>(A cartoon beauty wearing sunglasses.) </td>
    <td align="center">水墨风格,一片紫色薰衣草地。<br>(Ink style. A purple lavender field.) </td>
  </tr>
  <tr>
    <td align="center"><img src="ipadapter/asset/output/tiger_roar.png" alt="Image 3" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/output/beauty_glass.png" alt="Image 4" width="200"/></td>
    <td align="center"><img src="ipadapter/asset/output/xunyicao_style.png" alt="Image 5" width="200"/></td>
  </tr>
 
  
</table>

  
## :art: Hunyuan-Captioner
Hunyuan-Captioner meets the need of text-to-image techniques by maintaining a high degree of image-text consistency. It can generate high-quality image descriptions from a variety of angles, including object description, objects relationships, background information, image style, etc. Our code is based on [LLaVA](https://github.com/haotian-liu/LLaVA) implementation.

### Examples

<td align="center"><img src="./asset/caption_demo.jpg" alt="Image 3" width="1200"/></td>

### Instructions
a. Install dependencies
     
The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.2).

b. Model download
```shell
# Use the huggingface-cli tool to download the model.
huggingface-cli download Tencent-Hunyuan/HunyuanCaptioner --local-dir ./ckpts/captioner
```

### Inference

Our model supports three different modes including: **directly generating Chinese caption**, **generating Chinese caption based on specific knowledge**, and **directly generating English caption**. The injected information can be either accurate cues or noisy labels (e.g., raw descriptions crawled from the internet). The model is capable of generating reliable and accurate descriptions based on both the inserted information and the image content.

|Mode           | Prompt Template                           |Description                           | 
| ---           | ---                                       | ---                                  |
|caption_zh     | 描述这张图片                               |Caption in Chinese                    | 
|insert_content | 根据提示词“{}”,描述这张图片                 |Caption with inserted knowledge| 
|caption_en     | Please describe the content of this image |Caption in English                    |
|               |                                           |                                      |
 

a. Single picture inference in Chinese

```bash
python mllm/caption_demo.py --mode "caption_zh" --image_file "mllm/images/demo1.png" --model_path "./ckpts/captioner"
```

b. Insert specific knowledge into caption

```bash
python mllm/caption_demo.py --mode "insert_content" --content "宫保鸡丁" --image_file "mllm/images/demo2.png" --model_path "./ckpts/captioner"
```

c. Single picture inference in English

```bash
python mllm/caption_demo.py --mode "caption_en" --image_file "mllm/images/demo3.png" --model_path "./ckpts/captioner"
```

d. Multiple pictures inference in Chinese

```bash
### Convert multiple pictures to csv file. 
python mllm/make_csv.py --img_dir "mllm/images" --input_file "mllm/images/demo.csv"

### Multiple pictures inference
python mllm/caption_demo.py --mode "caption_zh" --input_file "mllm/images/demo.csv" --output_file "mllm/images/demo_res.csv" --model_path "./ckpts/captioner"
```

(Optional) To convert the output csv file to Arrow format, please refer to [Data Preparation #3](#data-preparation) for detailed instructions. 


### Gradio 
To launch a Gradio demo locally, please run the following commands one by one. For more detailed instructions, please refer to [LLaVA](https://github.com/haotian-liu/LLaVA). 
```bash
cd mllm
python -m llava.serve.controller --host 0.0.0.0 --port 10000

python -m llava.serve.gradio_web_server --controller http://0.0.0.0:10000 --model-list-mode reload --port 443

python -m llava.serve.model_worker --host 0.0.0.0 --controller http://0.0.0.0:10000 --port 40000 --worker http://0.0.0.0:40000 --model-path "../ckpts/captioner" --model-name LlavaMistral
```
Then the demo can be accessed through http://0.0.0.0:443. It should be noted that the 0.0.0.0 here needs to be X.X.X.X with your server IP.

## 🚀 Acceleration (for Linux)

- We provide TensorRT version of HunyuanDiT for inference acceleration (faster than flash attention).
See [Tencent-Hunyuan/TensorRT-libs](https://huggingface.co/Tencent-Hunyuan/TensorRT-libs) for more details.

- We provide Distillation version of HunyuanDiT for inference acceleration.
See [Tencent-Hunyuan/Distillation](https://huggingface.co/Tencent-Hunyuan/Distillation) for more details.

## 🔗 BibTeX
If you find [Hunyuan-DiT](https://arxiv.org/abs/2405.08748) or [DialogGen](https://arxiv.org/abs/2403.08857) useful for your research and applications, please cite using this BibTeX:

```BibTeX
@misc{li2024hunyuandit,
      title={Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding}, 
      author={Zhimin Li and Jianwei Zhang and Qin Lin and Jiangfeng Xiong and Yanxin Long and Xinchi Deng and Yingfang Zhang and Xingchao Liu and Minbin Huang and Zedong Xiao and Dayou Chen and Jiajun He and Jiahao Li and Wenyue Li and Chen Zhang and Rongwei Quan and Jianxiang Lu and Jiabin Huang and Xiaoyan Yuan and Xiaoxiao Zheng and Yixuan Li and Jihong Zhang and Chao Zhang and Meng Chen and Jie Liu and Zheng Fang and Weiyan Wang and Jinbao Xue and Yangyu Tao and Jianchen Zhu and Kai Liu and Sihuan Lin and Yifu Sun and Yun Li and Dongdong Wang and Mingtao Chen and Zhichao Hu and Xiao Xiao and Yan Chen and Yuhong Liu and Wei Liu and Di Wang and Yong Yang and Jie Jiang and Qinglin Lu},
      year={2024},
      eprint={2405.08748},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@article{huang2024dialoggen,
  title={DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation},
  author={Huang, Minbin and Long, Yanxin and Deng, Xinchi and Chu, Ruihang and Xiong, Jiangfeng and Liang, Xiaodan and Cheng, Hong and Lu, Qinglin and Liu, Wei},
  journal={arXiv preprint arXiv:2403.08857},
  year={2024}
}
```

## Start History

<a href="https://star-history.com/#Tencent/HunyuanDiT&Date">
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent/HunyuanDiT&type=Date" />
 </picture>
</a>