export_onnx.py 14 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from pathlib import Path

import torch
from loguru import logger

from hydit.config import get_args
from hydit.modules.models import HunYuanDiT, HUNYUAN_DIT_CONFIG

import numpy as np
import onnx
import onnx_graphsurgeon as gs
import polygraphy.backend.onnx.loader
from copy import deepcopy


def _to_tuple(val):
    if isinstance(val, (list, tuple)):
        if len(val) == 1:
            val = [val[0], val[0]]
        elif len(val) == 2:
            val = tuple(val)
        else:
            raise ValueError(f"Invalid value: {val}")
    elif isinstance(val, (int, float)):
        val = (val, val)
    else:
        raise ValueError(f"Invalid value: {val}")
    return val


class ExportONNX(object):
    def __init__(self, args, models_root_path):
        self.args = args
        self.model = None
        # Set device and disable gradient
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        torch.set_grad_enabled(False)

        # Check arguments
        t2i_root_path = Path(models_root_path) / "t2i"
        self.root = t2i_root_path
        logger.info(f"Got text-to-image model root path: {t2i_root_path}")

        # Create folder to save onnx model
        onnx_workdir = Path(self.args.onnx_workdir)
        self.onnx_workdir = onnx_workdir
        self.onnx_export = self.onnx_workdir / "export/model.onnx"
        self.onnx_export.parent.mkdir(parents=True, exist_ok=True)
        self.onnx_modify = self.onnx_workdir / "export_modified/model.onnx"
        self.onnx_modify.parent.mkdir(parents=True, exist_ok=True)
        self.onnx_fmha = self.onnx_workdir / "export_modified_fmha/model.onnx"
        self.onnx_fmha.parent.mkdir(parents=True, exist_ok=True)

    def load_model(self):
        # ========================================================================
        # Create model structure and load the checkpoint
        logger.info(f"Building HunYuan-DiT model...")
        model_config = HUNYUAN_DIT_CONFIG[self.args.model]
        image_size = _to_tuple(self.args.image_size)
        latent_size = (image_size[0] // 8, image_size[1] // 8)

        model_dir = self.root / "model"
        model_path = model_dir / f"pytorch_model_{self.args.load_key}.pt"
        if not model_path.exists():
            raise ValueError(f"model_path not exists: {model_path}")

        # Build model structure
        self.model = (
            HunYuanDiT(
                self.args,
                input_size=latent_size,
                **model_config,
                log_fn=logger.info,
            )
            .half()
            .to(self.device)
        )  # Force to use fp16
        # Load model checkpoint
        logger.info(f"Loading torch model {model_path}...")
        state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
        self.model.load_state_dict(state_dict)
        self.model.eval()
        logger.info(f"Loading torch model finished")
        logger.info("==================================================")
        logger.info(f"                Model is ready.                  ")
        logger.info("==================================================")

    def export(self):
        if self.model is None:
            self.load_model()

        # Construct model inputs
        latent_model_input = torch.randn(2, 4, 128, 128, device=self.device).half()
        t_expand = torch.randint(0, 1000, [2], device=self.device).half()
        prompt_embeds = torch.randn(2, 77, 1024, device=self.device).half()
        attention_mask = torch.randint(0, 2, [2, 77], device=self.device).long()
        prompt_embeds_t5 = torch.randn(2, 256, 2048, device=self.device).half()
        attention_mask_t5 = torch.randint(0, 2, [2, 256], device=self.device).long()
        ims = torch.tensor(
            [[1024, 1024, 1024, 1024, 0, 0], [1024, 1024, 1024, 1024, 0, 0]],
            device=self.device,
        ).half()
        style = torch.tensor([0, 0], device=self.device).long()
        freqs_cis_img = (
            torch.randn(4096, 88),
            torch.randn(4096, 88),
        )

        save_to = self.onnx_export
        logger.info(f"Exporting ONNX model {save_to}...")
        logger.info(f"Exporting ONNX external data {save_to.parent}...")
        # Hydit version 1.2
        if not self.args.use_style_cond:
            model_args = (
                latent_model_input,
                t_expand,
                prompt_embeds,
                attention_mask,
                prompt_embeds_t5,
                attention_mask_t5,
                freqs_cis_img[0],
                freqs_cis_img[1],
            )
            torch.onnx.export(
                self.model,
                model_args,
                str(save_to),
                export_params=True,
                opset_version=17,
                do_constant_folding=True,
                input_names=[
                    "x",
                    "t",
                    "encoder_hidden_states",
                    "text_embedding_mask",
                    "encoder_hidden_states_t5",
                    "text_embedding_mask_t5",
                    "cos_cis_img",
                    "sin_cis_img",
                ],
                output_names=["output"],
                dynamic_axes={
                    "x": {0: "2B", 2: "H", 3: "W"},
                    "t": {0: "2B"},
                    "encoder_hidden_states": {0: "2B"},
                    "text_embedding_mask": {0: "2B"},
                    "encoder_hidden_states_t5": {0: "2B"},
                    "text_embedding_mask_t5": {0: "2B"},
                    "cos_cis_img": {0: "seqlen"},
                    "sin_cis_img": {0: "seqlen"},
                },
            )
        # Hydit version 1.0 or 1.1
        else:
            model_args = (
                latent_model_input,
                t_expand,
                prompt_embeds,
                attention_mask,
                prompt_embeds_t5,
                attention_mask_t5,
                freqs_cis_img[0],
                freqs_cis_img[1],
                ims,
                style,
            )
            torch.onnx.export(
                self.model,
                model_args,
                str(save_to),
                export_params=True,
                opset_version=17,
                do_constant_folding=True,
                input_names=[
                    "x",
                    "t",
                    "encoder_hidden_states",
                    "text_embedding_mask",
                    "encoder_hidden_states_t5",
                    "text_embedding_mask_t5",
                    "cos_cis_img",
                    "sin_cis_img",
                    "image_meta_size",
                    "style",
                ],
                output_names=["output"],
                dynamic_axes={
                    "x": {0: "2B", 2: "H", 3: "W"},
                    "t": {0: "2B"},
                    "encoder_hidden_states": {0: "2B"},
                    "text_embedding_mask": {0: "2B"},
                    "encoder_hidden_states_t5": {0: "2B"},
                    "text_embedding_mask_t5": {0: "2B"},
                    "image_meta_size": {0: "2B"},
                    "style": {0: "2B"},
                    "cos_cis_img": {0: "seqlen"},
                    "sin_cis_img": {0: "seqlen"},
                },
            )
        logger.info("Exporting onnx finished")

    def postprocessing(self):
        load_from = self.onnx_export
        save_to = self.onnx_modify
        logger.info(f"Postprocessing ONNX model {load_from}...")

        onnxModel = onnx.load(str(load_from), load_external_data=False)
        onnx.load_external_data_for_model(onnxModel, str(load_from.parent))
        graph = gs.import_onnx(onnxModel)

        # ADD GAMMA BETA FOR LN
        for node in graph.nodes:
            if node.name == "/final_layer/norm_final/LayerNormalization":
                constantKernel = gs.Constant(
                    "final_layer.norm_final.weight",
                    np.ascontiguousarray(np.ones((1408,), dtype=np.float32)),
                )
                constantBias = gs.Constant(
                    "final_layer.norm_final.bias",
                    np.ascontiguousarray(np.zeros((1408,), dtype=np.float32)),
                )
                node.inputs = [node.inputs[0], constantKernel, constantBias]
            if node.op == "LayerNormalization":
                input_fp32 = gs.Variable(name=node.name + "_input_tensor_fp32")
                cast_fp32_node = gs.Node(
                    op="Cast",
                    name=node.name + "_cast_to_fp32",
                    attrs={"to": onnx.TensorProto.FLOAT},
                    inputs=[node.inputs[0]],
                    outputs=[input_fp32],
                )
                scale = np.array(
                    deepcopy(node.inputs[1].values.tolist()), dtype=np.float32
                )
                bias = np.array(
                    deepcopy(node.inputs[2].values.tolist()), dtype=np.float32
                )
                scale_constant = gs.Constant(
                    node.inputs[1].name + "_fp32",
                    np.ascontiguousarray(scale.reshape(-1)),
                )
                bias_constant = gs.Constant(
                    node.inputs[2].name + "_fp32",
                    np.ascontiguousarray(bias.reshape(-1)),
                )
                node.inputs = [input_fp32, scale_constant, bias_constant]
                out = node.outputs[0]
                output_fp32 = gs.Variable(name=node.name + "_output_tensor_fp32")
                node.outputs = [output_fp32]
                cast_fp16_node = gs.Node(
                    op="Cast",
                    name=node.name + "_cast_to_fp16",
                    attrs={"to": onnx.TensorProto.FLOAT16},
                    inputs=[output_fp32],
                    outputs=[out],
                )
                graph.nodes.append(cast_fp16_node)
                graph.nodes.append(cast_fp32_node)

        graph.cleanup().toposort()
        onnx.save(
            gs.export_onnx(graph.cleanup()),
            str(save_to),
            save_as_external_data=True,
            all_tensors_to_one_file=False,
            location=str(save_to.parent),
        )
        logger.info(f"Postprocessing ONNX model finished: {save_to}")

    def fuse_attn(self):
        load_from = self.onnx_modify
        save_to = self.onnx_fmha
        logger.info(f"FuseAttn ONNX model {load_from}...")

        onnx_graph = polygraphy.backend.onnx.loader.fold_constants(
            onnx.load(str(load_from)),
            allow_onnxruntime_shape_inference=True,
        )
        graph = gs.import_onnx(onnx_graph)

        cnt = 0
        for node in graph.nodes:

            if (
                node.op == "Softmax"
                and node.i().op == "MatMul"
                and node.o().op == "MatMul"
                and node.o().o().op == "Transpose"
            ):

                if "pooler" in node.name:
                    continue

                if "attn1" in node.name:
                    matmul_0 = node.i()
                    transpose = matmul_0.i(1, 0)
                    transpose.attrs["perm"] = [0, 2, 1, 3]
                    k = transpose.outputs[0]
                    q = gs.Variable(
                        "transpose_0_v_{}".format(cnt), np.dtype(np.float16)
                    )
                    transpose_0 = gs.Node(
                        "Transpose",
                        "Transpose_0_{}".format(cnt),
                        attrs={"perm": [0, 2, 1, 3]},
                        inputs=[matmul_0.inputs[0]],
                        outputs=[q],
                    )
                    graph.nodes.append(transpose_0)

                    matmul_1 = node.o()
                    v = gs.Variable(
                        "transpose_1_v_{}".format(cnt), np.dtype(np.float16)
                    )
                    transpose_1 = gs.Node(
                        "Transpose",
                        "Transpose_1_{}".format(cnt),
                        attrs={"perm": [0, 2, 1, 3]},
                        inputs=[matmul_1.inputs[1]],
                        outputs=[v],
                    )
                    graph.nodes.append(transpose_1)

                    output_variable = node.o().o().outputs[0]
                    # fMHA_v = gs.Variable("fMHA_v", np.dtype(np.float16))
                    fMHA = gs.Node(
                        "fMHAPlugin",
                        "fMHAPlugin_1_{}".format(cnt),
                        # attrs={"scale": 1.0},
                        inputs=[q, k, v],
                        outputs=[output_variable],
                    )
                    graph.nodes.append(fMHA)
                    node.o().o().outputs = []
                    cnt = cnt + 1

                elif "attn2" in node.name:
                    matmul_0 = node.i()
                    transpose_q = matmul_0.i()
                    transpose_k = matmul_0.i(1, 0)
                    matmul_1 = node.o()
                    transpose_v = matmul_1.i(1, 0)
                    q = transpose_q.inputs[0]
                    k = transpose_k.inputs[0]
                    v = transpose_v.inputs[0]
                    output_variable = node.o().o().outputs[0]
                    fMHA = gs.Node(
                        "fMHAPlugin",
                        "fMHAPlugin_1_{}".format(cnt),
                        # attrs={"scale": 1.0},
                        inputs=[q, k, v],
                        outputs=[output_variable],
                    )
                    graph.nodes.append(fMHA)
                    node.o().o().outputs = []
                    cnt = cnt + 1
        print("mha count: ", cnt)
        logger.info("mha count: ", cnt)

        onnx.save(
            gs.export_onnx(graph.cleanup()),
            str(save_to),
            save_as_external_data=True,
        )
        logger.info(f"FuseAttn ONNX model finished: {save_to}")


if __name__ == "__main__":
    args = get_args()
    models_root_path = Path(args.model_root)
    if not models_root_path.exists():
        raise ValueError(f"`models_root` not exists: {models_root_path}")

    exporter = ExportONNX(args, models_root_path)
    exporter.export()
    exporter.postprocessing()
    exporter.fuse_attn()