build_visual_engine.py 22.6 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import argparse
import os
import shutil
import sys
import tarfile
from time import time

import yaml

# isort: off
import torch
import tensorrt as trt
from tensorrt_llm.builder import Builder

# isort: on
import torch.nn.functional as F
from PIL import Image
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForVision2Seq,
    AutoProcessor,
    Blip2ForConditionalGeneration,
    Blip2Processor,
    FuyuForCausalLM,
    FuyuProcessor,
    LlavaForConditionalGeneration,
    LlavaNextForConditionalGeneration,
    NougatProcessor,
    Pix2StructForConditionalGeneration,
    VisionEncoderDecoderModel,
)


def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model_type",
        type=str,
        default=None,
        choices=[
            "opt-2.7b",
            "opt-6.7b",
            "flan-t5-xl",
            "flan-t5-xxl",
            "llava",
            "llava_next",
            "vila",
            "nougat",
            "cogvlm",
            "fuyu",
            "pix2struct",
            "neva",
            "kosmos-2",
        ],
        help="Model type",
    )
    parser.add_argument(
        "--model_path",
        type=str,
        default=None,
        help="Huggingface repo, local directory with weights or path to checkpoint file",
    )
    parser.add_argument(
        "--vila_path", type=str, default=None, help="Path to VILA source code directory"
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default=None,
        help="Directory where visual TRT engines are saved",
    )
    parser.add_argument(
        "--max_batch_size",
        type=int,
        default=4,
        help="Maximum batch size for input images",
    )
    return parser.parse_args()


class VisionEngineBuilder:

    def __init__(self, args):
        args.device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
        if args.output_dir is None:
            args.output_dir = "visual_engines/%s" % (
                args.model_path.split("/")[-1].split(".")[0]
            )
        if not os.path.exists(args.output_dir):
            os.makedirs(args.output_dir)

        self.args = args

    def build(self):
        args = self.args
        if "opt" in args.model_type or "t5" in args.model_type:
            build_blip2_engine(args)
        elif args.model_type == "pix2struct":
            build_pix2struct_engine(args)
        elif args.model_type == "llava":
            build_llava_engine(args)
        elif args.model_type == "llava_next":
            build_llava_next_engine(args)
        elif args.model_type == "vila":
            assert (
                args.vila_path is not None
            ), "Please clone and provide VILA source code path"
            build_vila_engine(args)
        elif args.model_type == "nougat":
            build_nougat_engine(args)
        elif args.model_type == "cogvlm":
            build_cogvlm_engine(args)
        elif args.model_type == "fuyu":
            build_fuyu_engine(args)
        elif args.model_type == "neva":
            build_neva_engine(args)
        elif args.model_type == "kosmos-2":
            build_kosmos_engine(args)
        else:
            raise RuntimeError(f"Invalid model type {args.model_type}")


def export_visual_wrapper_onnx(
    visual_wrapper,
    input,
    output_dir,
    input_names=["input"],
    dynamic_axes={"input": {0: "batch"}},
):
    logger.log(trt.Logger.INFO, "Exporting onnx")
    os.makedirs(f"{output_dir}/onnx", exist_ok=True)
    torch.onnx.export(
        visual_wrapper,
        input,
        f"{output_dir}/onnx/visual_encoder.onnx",
        opset_version=17,
        input_names=input_names,
        output_names=["output"],
        dynamic_axes=dynamic_axes,
    )


def build_trt_engine(
    model_type, input_sizes, output_dir, max_batch_size, dtype=torch.float16
):
    part_name = "visual_encoder"
    onnx_file = "%s/onnx/%s.onnx" % (output_dir, part_name)
    engine_file = "%s/%s.engine" % (output_dir, part_name)
    config_file = "%s/%s" % (output_dir, "config.json")
    logger.log(trt.Logger.INFO, "Building TRT engine for %s" % part_name)

    builder = trt.Builder(logger)
    network = builder.create_network(
        1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    )
    profile = builder.create_optimization_profile()
    config_wrapper = Builder().create_builder_config(
        precision=str(dtype).split(".")[-1], model_type=model_type
    )
    config = config_wrapper.trt_builder_config

    parser = trt.OnnxParser(network, logger)

    with open(onnx_file, "rb") as model:
        if not parser.parse(model.read(), os.path.abspath(onnx_file)):
            logger.log(trt.Logger.ERROR, "Failed parsing %s" % onnx_file)
            for error in range(parser.num_errors):
                logger.log(trt.Logger.ERROR, parser.get_error(error))
        logger.log(trt.Logger.INFO, "Succeeded parsing %s" % onnx_file)

    # Delete onnx files since we don't need them now
    # shutil.rmtree(f'{output_dir}/onnx')

    nBS = -1
    nMinBS = 1
    nOptBS = max(nMinBS, int(max_batch_size / 2))
    nMaxBS = max_batch_size

    inputT = network.get_input(0)

    # input sizes can be a list of ints (e.g., [3, H, W]) when inputs are images,
    # or a list of three int lists (e.g., [[1, 1, 2700], [1, 500, 2700], [1, 4096, 2700]]).
    assert isinstance(input_sizes, list), "input_sizes must be a list"
    if isinstance(input_sizes[0], int):
        logger.log(trt.Logger.INFO, f"Processed input sizes {input_sizes}")
        inputT.shape = [nBS, *input_sizes]
        min_size = opt_size = max_size = input_sizes
    elif len(input_sizes) == 3 and isinstance(input_sizes[0], list):
        min_size, opt_size, max_size = input_sizes
        logger.log(
            trt.Logger.INFO,
            f"Processed min/opt/max input sizes {min_size}/{opt_size}/{max_size}",
        )
    else:
        raise ValueError(f"invalid input sizes: {input_sizes}")

    profile.set_shape(
        inputT.name, [nMinBS, *min_size], [nOptBS, *opt_size], [nMaxBS, *max_size]
    )
    if model_type == "pix2struct":
        inputT = network.get_input(1)
        P = input_sizes[0]  # Number of patches
        inputT.shape = [nBS, P]
        profile.set_shape(inputT.name, [nMinBS, P], [nOptBS, P], [nMaxBS, P])
    config.add_optimization_profile(profile)

    t0 = time()
    engine_string = builder.build_serialized_network(network, config)
    t1 = time()
    if engine_string is None:
        raise RuntimeError("Failed building %s" % (engine_file))
    else:
        logger.log(
            trt.Logger.INFO, "Succeeded building %s in %d s" % (engine_file, t1 - t0)
        )
        with open(engine_file, "wb") as f:
            f.write(engine_string)

    Builder.save_config(config_wrapper, config_file)


def build_blip2_engine(args):
    model_type = "Salesforce/blip2-" + args.model_type
    processor = Blip2Processor.from_pretrained(model_type)

    raw_image = Image.new("RGB", [10, 10])  # dummy image
    prompt = "Question: what is this? Answer:"
    inputs = processor(raw_image, prompt, return_tensors="pt").to(
        args.device, torch.float16
    )
    image = inputs["pixel_values"]

    class Blip2VisionWrapper(torch.nn.Module):

        def __init__(self, vision_model, qformer, projector, query_tokens):
            super().__init__()
            self.vision_model = vision_model
            self.qformer = qformer
            self.projector = projector
            self.query_tokens = query_tokens

        def forward(self, image):
            features = self.vision_model(image)[0]
            qformer_output = self.qformer(
                query_embeds=self.query_tokens,
                encoder_hidden_states=features,
                return_dict=True,
            )
            return self.projector(qformer_output.last_hidden_state)

    model = Blip2ForConditionalGeneration.from_pretrained(
        model_type, torch_dtype=torch.float16
    )
    wrapper = Blip2VisionWrapper(
        model.vision_model, model.qformer, model.language_projection, model.query_tokens
    )
    wrapper.to(args.device)

    export_visual_wrapper_onnx(wrapper, image, args.output_dir)
    build_trt_engine(
        model_type,
        [image.shape[1], image.shape[2], image.shape[3]],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
    )


def build_pix2struct_engine(args):
    processor = AutoProcessor.from_pretrained(args.model_path)
    raw_image = Image.new("RGB", [10, 10])  # dummy image
    dtype = torch.float16
    inputs = processor(text="dummy", images=raw_image, return_tensors="pt")
    image = inputs["flattened_patches"].to(args.device, dtype)
    attention_mask = inputs["attention_mask"].to(args.device, torch.int)

    class pix2structVisionWrapper(torch.nn.Module):

        def __init__(self, encoder):
            super().__init__()
            self.encoder = encoder

        def forward(self, image, attention_mask):
            vision_x = self.encoder.embeddings(image)
            img_features = self.encoder.encoder(vision_x, attention_mask=attention_mask)
            img_features = self.encoder.layernorm(img_features[0])
            return img_features

    model = Pix2StructForConditionalGeneration.from_pretrained(
        args.model_path, torch_dtype=dtype
    )

    wrapper = pix2structVisionWrapper(model.encoder.to(args.device))
    # input shape: batch size, number of patches, hidden dimension
    # attention mask shape: batch size, number of patches
    # The number of image patches can vary depending on the image size, but it typically
    # falls within a relatively narrow range. To improve performance, we can avoid using
    # dynamic axis for the input patches and instead use a fixed number of patches along
    # with an attention mask.
    export_visual_wrapper_onnx(
        wrapper,
        (image, attention_mask),
        args.output_dir,
        input_names=["input", "attention_mask"],
        dynamic_axes={"input": {0: "batch"}, "attention_mask": {0: "batch"}},
    )
    build_trt_engine(
        args.model_type,
        [image.shape[1], image.shape[2]],  # Number of Patches, Hidden Dimension
        args.output_dir,
        args.max_batch_size,
        torch.bfloat16,
    )


def build_llava_engine(args):
    processor = AutoProcessor.from_pretrained(args.model_path)
    raw_image = Image.new("RGB", [10, 10])  # dummy image
    image = processor(text="dummy", images=raw_image, return_tensors="pt")[
        "pixel_values"
    ].to(args.device, torch.float16)

    class LlavaVisionWrapper(torch.nn.Module):

        def __init__(self, tower, projector, feature_layer):
            super().__init__()
            self.tower = tower
            self.projector = projector
            self.feature_layer = feature_layer

        def forward(self, image):
            all_hidden_states = self.tower(
                image, output_hidden_states=True
            ).hidden_states
            features = all_hidden_states[self.feature_layer][:, 1:]
            return self.projector(features)

    model = LlavaForConditionalGeneration.from_pretrained(
        args.model_path, torch_dtype=torch.float16
    )
    wrapper = LlavaVisionWrapper(
        model.vision_tower.to(args.device),
        model.multi_modal_projector.to(args.device),
        model.config.vision_feature_layer,
    )

    export_visual_wrapper_onnx(wrapper, image, args.output_dir)
    build_trt_engine(
        args.model_type,
        [image.shape[1], image.shape[2], image.shape[3]],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
    )


def build_llava_next_engine(args):
    processor = AutoProcessor.from_pretrained(args.model_path)
    # raw_image = Image.new('RGB', [10, 10])  # dummy image
    import requests

    url = "https://www.ilankelman.org/stopsigns/australia.jpg"
    raw_image = Image.open(requests.get(url, stream=True).raw)
    image = processor(text="dummy", images=raw_image, return_tensors="pt")[
        "pixel_values"
    ].to(args.device, torch.float16)

    class LlavaVisionWrapper(torch.nn.Module):

        def __init__(self, tower, projector, feature_layer):
            super().__init__()
            self.tower = tower
            self.projector = projector
            self.feature_layer = feature_layer

        def forward(self, image):
            all_hidden_states = self.tower(
                image, output_hidden_states=True
            ).hidden_states
            features = all_hidden_states[self.feature_layer][:, 1:]
            return self.projector(features)

    model = LlavaNextForConditionalGeneration.from_pretrained(
        args.model_path, torch_dtype=torch.float16
    )
    wrapper = LlavaVisionWrapper(
        model.vision_tower.to(args.device),
        model.multi_modal_projector.to(args.device),
        model.config.vision_feature_layer,
    )

    # 2. Merge text and images
    # ! infer image_num_patches from image_sizes
    pixel_values = image
    image_num_patches = [pixel_values.shape[1]]
    # figure out if pixel_values is concatenated or stacked
    if image.dim() == 5:
        # stacking when input is (batch_size, num_patches, num_channels, height, width)
        _pixel_values_list = [
            pix_val[:num_patch]
            for pix_val, num_patch in zip(pixel_values, image_num_patches)
        ]
        pixel_values = torch.cat(_pixel_values_list, dim=0)
    elif pixel_values.dim() != 4:
        # otherwise has to be stacked from list of (num_patches, num_channels, height, width)
        raise ValueError(
            f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions"
        )
    print("------Debug image: ", pixel_values, pixel_values.shape)
    image = pixel_values

    export_visual_wrapper_onnx(wrapper, image, args.output_dir)
    build_trt_engine(
        args.model_type,
        [image.shape[1], image.shape[2], image.shape[3]],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
    )


def build_vila_engine(args):
    # Note: VILA model is not in public HF model zoo yet. We need to explicitly import from the git repo
    sys.path.append(args.vila_path)
    from llava.model import LlavaLlamaForCausalLM

    model = LlavaLlamaForCausalLM.from_pretrained(
        args.model_path, torch_dtype=torch.float16
    )
    vision_tower = model.get_vision_tower()
    image_processor = vision_tower.image_processor
    raw_image = Image.new("RGB", [10, 10])  # dummy image
    image = image_processor(images=raw_image, return_tensors="pt")["pixel_values"].to(
        args.device, torch.float16
    )

    class VilaVisionWrapper(torch.nn.Module):

        def __init__(self, tower, projector):
            super().__init__()
            self.tower = tower
            self.projector = projector

        def forward(self, image):
            features = self.tower(image)
            return self.projector(features)

    model = LlavaLlamaForCausalLM.from_pretrained(
        args.model_path, torch_dtype=torch.float16
    )
    wrapper = VilaVisionWrapper(
        model.get_model().get_vision_tower().to(args.device),
        model.get_model().mm_projector.to(args.device),
    )

    export_visual_wrapper_onnx(wrapper, image, args.output_dir)
    build_trt_engine(
        args.model_type,
        [image.shape[1], image.shape[2], image.shape[3]],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
    )


def build_nougat_engine(args):
    processor = NougatProcessor.from_pretrained(args.model_path)
    raw_image = Image.new("RGB", [10, 10])  # dummy image
    image = processor(raw_image, return_tensors="pt")["pixel_values"].to(
        args.device, torch.float16
    )

    class SwinEncoderWrapper(torch.nn.Module):

        def __init__(self, encoder):
            super().__init__()
            self.encoder = encoder

        def forward(self, image):
            return self.encoder(image).last_hidden_state

    model = VisionEncoderDecoderModel.from_pretrained(
        args.model_path, torch_dtype=torch.float16
    )
    swin_encoder = model.get_encoder().to(args.device)
    wrapper = SwinEncoderWrapper(swin_encoder)

    export_visual_wrapper_onnx(wrapper, image, args.output_dir)
    build_trt_engine(
        args.model_type,
        [image.shape[1], image.shape[2], image.shape[3]],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
    )


def build_cogvlm_engine(args):
    hf_config = AutoConfig.from_pretrained(args.model_path, trust_remote_code=True)
    image_size = hf_config.vision_config["image_size"]
    dtype = hf_config.torch_dtype
    image = torch.empty(
        1, 3, image_size, image_size, dtype=dtype, device=args.device
    )  # dummy image

    class CogVlmVisionWrapper(torch.nn.Module):

        def __init__(self, encoder):
            super().__init__()
            self.encoder = encoder

        def forward(self, image):
            return self.encoder(image)

    cogvlm = AutoModelForCausalLM.from_pretrained(
        args.model_path, torch_dtype=dtype, trust_remote_code=True
    )
    vit_encoder = cogvlm.model.vision.to(args.device).eval()

    wrapper = CogVlmVisionWrapper(vit_encoder)
    export_visual_wrapper_onnx(wrapper, image, args.output_dir)
    build_trt_engine(
        args.model_type,
        [image.shape[1], image.shape[2], image.shape[3]],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
        dtype,
    )


def build_fuyu_engine(args):
    processor = FuyuProcessor.from_pretrained(args.model_path)
    raw_image = Image.new("RGB", [10, 10])
    image = (
        processor(text="dummy", images=raw_image, return_tensors="pt")["image_patches"][
            0
        ]
        .to(args.device, torch.float16)
        .unsqueeze(0)
    )

    class FuyuEncoderWrapper(torch.nn.Module):

        def __init__(self, linear):
            super().__init__()
            self.linear = linear.to(torch.float16)

        def forward(self, patches):
            return self.linear(patches).flatten(0, 1)

    model = FuyuForCausalLM.from_pretrained(args.model_path, torch_dtype=torch.float16)

    vision_encoder = model.vision_embed_tokens
    wrapper = FuyuEncoderWrapper(vision_encoder).to(args.device)

    export_visual_wrapper_onnx(
        wrapper,
        image,
        args.output_dir,
        dynamic_axes={"input": {0: "batch", 2: "patch"}},
    )
    build_trt_engine(
        args.model_type,
        # [nImgs, nImgPatches, nDims]
        # nImgs is always one since each query has exactly one image
        # nImgPatches depends on image size (patch size: 30x30)
        # nDims is 30x30x3=2700 (patch size x color channels)
        [[1, 1, 2700], [1, 500, 2700], [1, 4096, 2700]],
        args.output_dir,
        args.max_batch_size,
    )


def build_neva_engine(args):
    # extract NeMo checkpoint
    with tarfile.open(args.model_path) as tar:
        nemo_config = yaml.safe_load(tar.extractfile("./model_config.yaml"))
        try:
            # trained without TP
            mp0_weights = torch.load(
                tar.extractfile("./model_weights.ckpt"), map_location=args.device
            )
        except KeyError:
            # trained with TP
            mp0_weights = torch.load(
                tar.extractfile("./mp_rank_00/model_weights.ckpt"),
                map_location=args.device,
            )

    vision_config = nemo_config["mm_cfg"]["vision_encoder"]

    class VisionEncoderWrapper(torch.nn.Module):

        def __init__(self, encoder, connector):
            super().__init__()
            self.encoder = encoder
            self.connector = connector

        def forward(self, images):
            vision_x = self.encoder(pixel_values=images, output_hidden_states=True)
            vision_x = vision_x.hidden_states[-2]
            vision_x = vision_x[:, 1:]
            vision_x = self.connector(vision_x)
            return vision_x

    encoder = AutoModel.from_pretrained(
        vision_config["from_pretrained"],
        torch_dtype=torch.bfloat16,
        trust_remote_code=True,
    )
    vision_encoder = encoder.vision_model
    hf_config = encoder.config
    dtype = hf_config.torch_dtype

    # connector
    assert nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "mlp2x_gelu"
    vision_connector = torch.nn.Sequential(
        torch.nn.Linear(
            vision_config["hidden_size"], nemo_config["hidden_size"], bias=True
        ),
        torch.nn.GELU(),
        torch.nn.Linear(
            nemo_config["hidden_size"], nemo_config["hidden_size"], bias=True
        ),
    ).to(dtype=dtype)

    key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
    for layer in range(0, 3, 2):
        vision_connector[layer].load_state_dict(
            {
                "weight": mp0_weights[f"{key_prefix}.{layer}.weight"].to(dtype),
                "bias": mp0_weights[f"{key_prefix}.{layer}.bias"].to(dtype),
            }
        )

    # export the whole wrapper
    wrapper = VisionEncoderWrapper(vision_encoder, vision_connector).to(
        args.device, dtype
    )
    image_size = hf_config.vision_config.image_size
    dummy_image = torch.empty(
        1, 3, image_size, image_size, dtype=dtype, device=args.device
    )  # dummy image
    export_visual_wrapper_onnx(wrapper, dummy_image, args.output_dir)
    build_trt_engine(
        args.model_type,
        [3, image_size, image_size],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
        dtype,
    )


def build_kosmos_engine(args):
    processor = AutoProcessor.from_pretrained(args.model_path)
    raw_image = Image.new("RGB", [10, 10])  # dummy image
    image = processor(text="dummy", images=raw_image, return_tensors="pt")[
        "pixel_values"
    ].to(args.device, torch.float16)

    class VisionEncoderWrapper(torch.nn.Module):

        def __init__(self, encoder, connector):
            super().__init__()
            self.encoder = encoder
            self.connector = connector

        def forward(self, images):
            vision_x = self.encoder(images, output_hidden_states=True)
            img_features = self.encoder.model.post_layernorm(vision_x.last_hidden_state)
            img_features = F.normalize(img_features, dim=-1)
            img_features, _ = self.connector(img_features)
            return img_features

    model = AutoModelForVision2Seq.from_pretrained(
        args.model_path, torch_dtype=torch.float16
    )
    wrapper = VisionEncoderWrapper(
        model.vision_model.to(args.device),
        model.image_to_text_projection.to(args.device),
    )

    export_visual_wrapper_onnx(wrapper, image, args.output_dir)
    build_trt_engine(
        args.model_type,
        [image.shape[1], image.shape[2], image.shape[3]],  # [3, H, W]
        args.output_dir,
        args.max_batch_size,
    )


if __name__ == "__main__":
    logger = trt.Logger(trt.Logger.INFO)
    args = parse_arguments()
    builder = VisionEngineBuilder(args)
    builder.build()