inference.py 6.9 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import random
import torch
from diffusers import HunyuanDiTPipeline
from transformers import T5EncoderModel
import time
from loguru import logger
import gc
import sys

NEGATIVE_PROMPT = ""

TEXT_ENCODER_CONF = {
    "negative_prompt": NEGATIVE_PROMPT,
    "prompt_embeds": None,
    "negative_prompt_embeds": None,
    "prompt_attention_mask": None,
    "negative_prompt_attention_mask": None,
    "max_sequence_length": 256,
    "text_encoder_index": 1,
}


def flush():
    gc.collect()
    torch.cuda.empty_cache()


class End2End(object):
    def __init__(self, model_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled"):
        self.model_id = model_id
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        # ========================================================================
        self.default_negative_prompt = NEGATIVE_PROMPT
        logger.info("==================================================")
        logger.info(f"                Model is ready.                  ")
        logger.info("==================================================")

    def load_pipeline(self):
        self.pipeline = HunyuanDiTPipeline.from_pretrained(
            self.model_id,
            text_encoder=None,
            text_encoder_2=None,
            torch_dtype=torch.float16,
        ).to(self.device)

    def get_text_emb(self, prompts):
        with torch.no_grad():
            text_encoder_2 = T5EncoderModel.from_pretrained(
                self.model_id,
                subfolder="text_encoder_2",
                load_in_8bit=True,
                device_map="auto",
            )
            encoder_pipeline = HunyuanDiTPipeline.from_pretrained(
                self.model_id,
                text_encoder_2=text_encoder_2,
                transformer=None,
                vae=None,
                torch_dtype=torch.float16,
                device_map="balanced",
            )
            TEXT_ENCODER_CONF["negative_prompt"] = self.default_negative_prompt
            prompt_emb1 = encoder_pipeline.encode_prompt(
                prompts, negative_prompt=self.default_negative_prompt
            )
            prompt_emb2 = encoder_pipeline.encode_prompt(prompts, **TEXT_ENCODER_CONF)
            del text_encoder_2
            del encoder_pipeline
        flush()
        return prompt_emb1, prompt_emb2

    def predict(
        self,
        user_prompt,
        seed=None,
        enhanced_prompt=None,
        negative_prompt=None,
        infer_steps=50,
        guidance_scale=6,
        batch_size=1,
    ):
        # ========================================================================
        # Arguments: seed
        # ========================================================================
        if seed is None:
            seed = random.randint(0, 1_000_000)
        if not isinstance(seed, int):
            raise TypeError(f"`seed` must be an integer, but got {type(seed)}")
        generator = torch.Generator(device=self.device).manual_seed(seed)

        # ========================================================================
        # Arguments: prompt, new_prompt, negative_prompt
        # ========================================================================
        if not isinstance(user_prompt, str):
            raise TypeError(
                f"`user_prompt` must be a string, but got {type(user_prompt)}"
            )
        user_prompt = user_prompt.strip()
        prompt = user_prompt

        if enhanced_prompt is not None:
            if not isinstance(enhanced_prompt, str):
                raise TypeError(
                    f"`enhanced_prompt` must be a string, but got {type(enhanced_prompt)}"
                )
            enhanced_prompt = enhanced_prompt.strip()
            prompt = enhanced_prompt

        # negative prompt
        if negative_prompt is not None and negative_prompt != "":
            self.default_negative_prompt = negative_prompt
        if not isinstance(self.default_negative_prompt, str):
            raise TypeError(
                f"`negative_prompt` must be a string, but got {type(negative_prompt)}"
            )

        # ========================================================================

        logger.debug(
            f"""
                       prompt: {user_prompt}
              enhanced prompt: {enhanced_prompt}
                         seed: {seed}
              negative_prompt: {negative_prompt}
                   batch_size: {batch_size}
               guidance_scale: {guidance_scale}
                  infer_steps: {infer_steps}
        """
        )

        # get text embeding
        flush()
        prompt_emb1, prompt_emb2 = self.get_text_emb(prompt)
        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = prompt_emb1
        (
            prompt_embeds_2,
            negative_prompt_embeds_2,
            prompt_attention_mask_2,
            negative_prompt_attention_mask_2,
        ) = prompt_emb2
        del prompt_emb1
        del prompt_emb2
        # get pipeline
        self.load_pipeline()
        samples = self.pipeline(
            prompt_embeds=prompt_embeds,
            prompt_embeds_2=prompt_embeds_2,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_prompt_embeds_2=negative_prompt_embeds_2,
            prompt_attention_mask=prompt_attention_mask,
            prompt_attention_mask_2=prompt_attention_mask_2,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            negative_prompt_attention_mask_2=negative_prompt_attention_mask_2,
            num_images_per_prompt=batch_size,
            guidance_scale=guidance_scale,
            num_inference_steps=infer_steps,
            generator=generator,
        ).images[0]

        return {
            "images": samples,
            "seed": seed,
        }


if __name__ == "__main__":

    if len(sys.argv) != 5:
        print(
            "Usage: python lite/inference.py ${model_id} ${prompt} ${infer_steps} ${guidance_scale}"
        )
        print(
            "model_id: Choose a diffusers repository from the official Hugging Face repository https://huggingface.co/Tencent-Hunyuan, "
            "such as Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers, "
            "Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled, "
            "Tencent-Hunyuan/HunyuanDiT-Diffusers, or Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled."
        )
        print("prompt: the input prompt")
        print("infer_steps: infer_steps")
        print("guidance_scale: guidance_scale")
        sys.exit(1)
    model_id = sys.argv[1]
    prompt = sys.argv[2]
    infer_steps = int(sys.argv[3])
    guidance_scale = int(sys.argv[4])
    gen = End2End(model_id)
    seed = 42
    results = gen.predict(
        prompt,
        seed=seed,
        infer_steps=infer_steps,
        guidance_scale=guidance_scale,
    )
    results["images"].save("./lite_image.png")