hunyuan_train_network.py 7.88 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import warnings

warnings.filterwarnings("ignore")

import argparse

import torch
from diffusers import DDPMScheduler
from library.device_utils import init_ipex, clean_memory_on_device

init_ipex()

from library import (
    hunyuan_models,
    hunyuan_utils,
    sdxl_model_util,
    sdxl_train_util,
    train_util,
)
import train_network
from library.utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)


class HunYuanNetworkTrainer(train_network.NetworkTrainer):
    def __init__(self):
        super().__init__()
        self.vae_scale_factor = sdxl_model_util.VAE_SCALE_FACTOR
        self.is_sdxl = True

    def assert_extra_args(self, args, train_dataset_group):
        super().assert_extra_args(args, train_dataset_group)
        # sdxl_train_util.verify_sdxl_training_args(args)

        if args.cache_text_encoder_outputs:
            assert (
                train_dataset_group.is_text_encoder_output_cacheable()
            ), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"

        assert (
            args.network_train_unet_only or not args.cache_text_encoder_outputs
        ), "network for Text Encoder cannot be trained with caching Text Encoder outputs / Text Encoderの出力をキャッシュしながらText Encoderのネットワークを学習することはできません"

        train_dataset_group.verify_bucket_reso_steps(16)

    def load_target_model(self, args, weight_dtype, accelerator):
        use_extra_cond = getattr(args, "use_extra_cond", False)
        (
            load_stable_diffusion_format,
            text_encoder1,
            text_encoder2,
            vae,
            unet,
            logit_scale,
            ckpt_info,
        ) = hunyuan_utils.load_target_model(
            args,
            accelerator,
            hunyuan_models.MODEL_VERSION_HUNYUAN_V1_1,
            weight_dtype,
            use_extra_cond=use_extra_cond,
        )

        self.load_stable_diffusion_format = load_stable_diffusion_format
        self.logit_scale = logit_scale
        self.ckpt_info = ckpt_info

        return (
            hunyuan_models.MODEL_VERSION_HUNYUAN_V1_1,
            [text_encoder1, text_encoder2],
            vae,
            unet,
        )

    def load_tokenizer(self, args):
        tokenizer = hunyuan_utils.load_tokenizers()
        return tokenizer

    def load_noise_scheduler(self, args):
        return DDPMScheduler(
            beta_start=0.00085,
            beta_end=args.beta_end,
            beta_schedule="scaled_linear",
            num_train_timesteps=1000,
            clip_sample=False,
            steps_offset=1,
        )

    def is_text_encoder_outputs_cached(self, args):
        return args.cache_text_encoder_outputs

    def cache_text_encoder_outputs_if_needed(
        self,
        args,
        accelerator,
        unet,
        vae,
        tokenizers,
        text_encoders,
        dataset: train_util.DatasetGroup,
        weight_dtype,
    ):
        if args.cache_text_encoder_outputs:
            raise NotImplementedError
        else:
            # Text Encoderから毎回出力を取得するので、GPUに乗せておく
            text_encoders[0].to(accelerator.device, dtype=weight_dtype)
            text_encoders[1].to(accelerator.device, dtype=weight_dtype)

    def get_text_cond(
        self, args, accelerator, batch, tokenizers, text_encoders, weight_dtype
    ):
        if (
            "text_encoder_outputs1_list" not in batch
            or batch["text_encoder_outputs1_list"] is None
        ):
            input_ids1 = batch["input_ids"]
            input_ids2 = batch["input_ids2"]
            logger.debug("input_ids1", input_ids1.shape)
            logger.debug("input_ids2", input_ids2.shape)
            with torch.enable_grad():
                input_ids1 = input_ids1.to(accelerator.device)
                input_ids2 = input_ids2.to(accelerator.device)
                encoder_hidden_states1, mask1, encoder_hidden_states2, mask2 = (
                    hunyuan_utils.hunyuan_get_hidden_states(
                        args.max_token_length,
                        input_ids1,
                        input_ids2,
                        tokenizers[0],
                        tokenizers[1],
                        text_encoders[0],
                        text_encoders[1],
                        None if not args.full_fp16 else weight_dtype,
                        accelerator=accelerator,
                    )
                )
                logger.debug("encoder_hidden_states1", encoder_hidden_states1.shape)
                logger.debug("encoder_hidden_states2", encoder_hidden_states2.shape)
        else:
            raise NotImplementedError
        return encoder_hidden_states1, mask1, encoder_hidden_states2, mask2

    def call_unet(
        self,
        args,
        accelerator,
        unet,
        noisy_latents,
        timesteps,
        text_conds,
        batch,
        weight_dtype,
    ):
        noisy_latents = noisy_latents.to(
            weight_dtype
        )  # TODO check why noisy_latents is not weight_dtype

        # get size embeddings
        orig_size = batch["original_sizes_hw"]  # B, 2
        crop_size = batch["crop_top_lefts"]  # B, 2
        target_size = batch["target_sizes_hw"]  # B, 2
        B, C, H, W = noisy_latents.shape

        style = torch.as_tensor([0] * B, device=accelerator.device)
        image_meta_size = torch.concat(
            [
                orig_size,
                target_size,
                # Not following SDXL but following HunYuan's Implementation
                # TODO examine if this is correct
                torch.zeros_like(target_size),
            ]
        )
        freqs_cis_img = hunyuan_utils.calc_rope(H * 8, W * 8, 2, 88)

        # concat embeddings
        encoder_hidden_states1, mask1, encoder_hidden_states2, mask2 = text_conds
        noise_pred = unet(
            noisy_latents,
            timesteps,
            encoder_hidden_states=encoder_hidden_states1,
            text_embedding_mask=mask1,
            encoder_hidden_states_t5=encoder_hidden_states2,
            text_embedding_mask_t5=mask2,
            image_meta_size=image_meta_size,
            style=style,
            cos_cis_img=freqs_cis_img[0],
            sin_cis_img=freqs_cis_img[1],
        )
        # TODO Handle learned sigma correctly
        return noise_pred.chunk(2, dim=1)[0]

    def sample_images(
        self,
        accelerator,
        args,
        epoch,
        global_step,
        device,
        vae,
        tokenizer,
        text_encoder,
        unet,
    ):
        steps = global_step
        if steps == 0:
            if not args.sample_at_first:
                return
        else:
            if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
                return
            if args.sample_every_n_epochs is not None:
                # sample_every_n_steps は無視する
                if epoch is None or epoch % args.sample_every_n_epochs != 0:
                    return
            else:
                if (
                    steps % args.sample_every_n_steps != 0 or epoch is not None
                ):  # steps is not divisible or end of epoch
                    return
        logger.warning("Sampling images not supported yet.")


def setup_parser() -> argparse.ArgumentParser:
    parser = train_network.setup_parser()
    sdxl_train_util.add_sdxl_training_arguments(parser)
    return parser


if __name__ == "__main__":
    parser = setup_parser()

    args = parser.parse_args()
    train_util.verify_command_line_training_args(args)
    args = train_util.read_config_from_file(args, parser)

    trainer = HunYuanNetworkTrainer()
    trainer.train(args)