hunyuan_test_lora.py 7.27 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import torch

from k_diffusion.external import DiscreteVDDPMDenoiser
from k_diffusion.sampling import sample_euler_ancestral, get_sigmas_exponential

from PIL import Image
from pytorch_lightning import seed_everything

from library.hunyuan_models import *
from library.hunyuan_utils import *

# from lycoris.kohya import create_network_from_weights
from networks.lora import create_network_from_weights

from copy import deepcopy

PROMPT = "青花瓷风格, 在白色背景上,一只小狗在追逐蝴蝶"
NEG_PROMPT = ""
CLIP_TOKENS = 75 * 2 + 2
ATTN_MODE = "xformers"
H = 1024
W = 1024
STEPS = 100
CFG_SCALE = 6
DEVICE = "cuda"
DTYPE = torch.float16

VERSION = "1.2"

if VERSION == "1.1":
    BETA_END = 0.03
    USE_EXTRA_COND = True
    MODEL_PATH = "/root/albertxyu/HunYuanDiT-V1.1-fp16-pruned"
elif VERSION == "1.2":
    BETA_END = 0.018
    USE_EXTRA_COND = False
    MODEL_PATH = "/root/albertxyu/HunYuanDiT-V1.2-fp16-pruned"
else:
    raise ValueError(f"Invalid version: {VERSION}")

LORA_WEIGHT = "./test_lora_unet_clip_v1.2_0630/last-step00000400.ckpt"

# Global variables to store model components
_loaded_model = None
_loaded_model_path = None
_loaded_ckpt_path = None


def load_scheduler_sigmas(beta_start=0.00085, beta_end=0.018, num_train_timesteps=1000):
    betas = (
        torch.linspace(
            beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32
        )
        ** 2
    )
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)

    sigmas = np.array(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5)
    sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
    sigmas = torch.from_numpy(sigmas)
    return alphas_cumprod, sigmas


def load_model_if_needed(model_path, ckpt_path):
    global _loaded_model, _loaded_model_path, _loaded_ckpt_path
    if (
        _loaded_model is None
        or _loaded_model_path != model_path
        or _loaded_ckpt_path != ckpt_path
    ):
        (
            denoiser,
            patch_size,
            head_dim,
            clip_tokenizer,
            clip_encoder,
            mt5_embedder,
            vae,
        ) = load_model(
            model_path, dtype=DTYPE, device=DEVICE, use_extra_cond=USE_EXTRA_COND
        )
        denoiser.eval()
        denoiser.disable_fp32_silu()
        denoiser.disable_fp32_layer_norm()
        denoiser.set_attn_mode(ATTN_MODE)
        vae.requires_grad_(False)
        mt5_embedder.to(torch.float16)

        lora_net, state_dict = create_network_from_weights(
            multiplier=1.0,
            file=ckpt_path,
            vae=vae,
            text_encoder=[clip_encoder, mt5_embedder],
            unet=denoiser,
        )
        lora_net.apply_to(
            text_encoder=[clip_encoder, mt5_embedder],
            unet=denoiser,
        )
        lora_net.load_state_dict(state_dict)
        lora_net = lora_net.to(DEVICE, dtype=DTYPE)

        _loaded_model = (
            denoiser,
            patch_size,
            head_dim,
            clip_tokenizer,
            clip_encoder,
            mt5_embedder,
            vae,
        )
        _loaded_model_path = model_path
        _loaded_ckpt_path = ckpt_path

    return _loaded_model


def generate_image(
    prompt: str,
    neg_prompt: str,
    seed: int,
    height: int,
    width: int,
    steps: int,
    cfg_scale: int,
    model_path: str,
    ckpt_path: str,
    model_version: str,
):
    seed_everything(seed)
    if model_version == "1.2":
        BETA_END = 0.018
        USE_EXTRA_COND = False
    elif model_version == "1.1":
        BETA_END = 0.03
        USE_EXTRA_COND = True
    else:
        raise ValueError(f"Invalid version: {model_version}")
    PROMPT = prompt
    NEG_PROMPT = neg_prompt
    H = height
    W = width
    STEPS = steps
    CFG_SCALE = cfg_scale
    MODEL_PATH = model_path
    LORA_WEIGHT = ckpt_path

    with torch.inference_mode(True), torch.no_grad():
        alphas, sigmas = load_scheduler_sigmas(beta_end=BETA_END)
        (
            denoiser,
            patch_size,
            head_dim,
            clip_tokenizer,
            clip_encoder,
            mt5_embedder,
            vae,
        ) = load_model_if_needed(MODEL_PATH, LORA_WEIGHT)

        with torch.autocast("cuda"):
            clip_h, clip_m, mt5_h, mt5_m = get_cond(
                PROMPT,
                mt5_embedder,
                clip_tokenizer,
                clip_encoder,
                # Should be same as original implementation with max_length_clip=77
                # Support 75*n + 2
                max_length_clip=CLIP_TOKENS,
            )
            neg_clip_h, neg_clip_m, neg_mt5_h, neg_mt5_m = get_cond(
                NEG_PROMPT,
                mt5_embedder,
                clip_tokenizer,
                clip_encoder,
                max_length_clip=CLIP_TOKENS,
            )
            clip_h = torch.concat([clip_h, neg_clip_h], dim=0)
            clip_m = torch.concat([clip_m, neg_clip_m], dim=0)
            mt5_h = torch.concat([mt5_h, neg_mt5_h], dim=0)
            mt5_m = torch.concat([mt5_m, neg_mt5_m], dim=0)
            torch.cuda.empty_cache()

        style = torch.as_tensor([0] * 2, device=DEVICE)
        # src hw, dst hw, 0, 0
        size_cond = [H, W, H, W, 0, 0]
        image_meta_size = torch.as_tensor([size_cond] * 2, device=DEVICE)
        freqs_cis_img = calc_rope(H, W, patch_size, head_dim)

        denoiser_wrapper = DiscreteVDDPMDenoiser(
            # A quick patch for learn_sigma
            lambda *args, **kwargs: denoiser(*args, **kwargs).chunk(2, dim=1)[0],
            alphas,
            False,
        ).to(DEVICE)

        def cfg_denoise_func(x, sigma):
            cond, uncond = denoiser_wrapper(
                x.repeat(2, 1, 1, 1),
                sigma.repeat(2),
                encoder_hidden_states=clip_h,
                text_embedding_mask=clip_m,
                encoder_hidden_states_t5=mt5_h,
                text_embedding_mask_t5=mt5_m,
                image_meta_size=image_meta_size,
                style=style,
                cos_cis_img=freqs_cis_img[0],
                sin_cis_img=freqs_cis_img[1],
            ).chunk(2, dim=0)
            return uncond + (cond - uncond) * CFG_SCALE

        sigmas = denoiser_wrapper.get_sigmas(STEPS).to(DEVICE)
        sigmas = get_sigmas_exponential(
            STEPS, denoiser_wrapper.sigma_min, denoiser_wrapper.sigma_max, DEVICE
        )
        x1 = torch.randn(1, 4, H // 8, W // 8, dtype=torch.float16, device=DEVICE)

        with torch.autocast("cuda"):
            sample = sample_euler_ancestral(
                cfg_denoise_func,
                x1 * sigmas[0],
                sigmas,
            )
            torch.cuda.empty_cache()
            with torch.no_grad():
                latent = sample / 0.13025
                image = vae.decode(latent).sample
                image = (image / 2 + 0.5).clamp(0, 1)
                image = image.permute(0, 2, 3, 1).cpu().numpy()
                image = (image * 255).round().astype(np.uint8)
                image = [Image.fromarray(im) for im in image]
                for im in image:
                    # im.save(f"test_1600_{VERSION}_lora.png")
                    im.save(f"output.png")


if __name__ == "__main__":
    seed_everything(0)
    generate_image(
        PROMPT, NEG_PROMPT, 0, H, W, STEPS, CFG_SCALE, MODEL_PATH, LORA_WEIGHT, VERSION
    )