tools.py 7.28 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import random
import logging
from pathlib import Path
import shutil

import numpy as np
from PIL import Image
import torch
import torch.distributed as dist
from tqdm.auto import tqdm
import math
import torch.nn.functional as F
import os


def get_trainable_params(model):
    params = model.parameters()
    params = [p for p in params if p.requires_grad]
    return params


def get_trainable_params_ipa(model, args, freeze_others=False):
    if args.training_parts == "all":
        params = model.parameters()
    elif args.training_parts == "time_embedding":
        params = [p for n, p in model.named_parameters() if "t_embedder" in n]
        if freeze_others:
            for n, p in model.named_parameters():
                if "t_embedder" not in n:
                    p.requires_grad_(False)
    elif (
        args.training_parts == "adapt_concat_to_text_concat"
    ):  # adapt concat to text_concat

        def valid_name(n):
            if (
                "default_modulation" in n
                or "image_meta_size_embedder" in n
                or "t_embedder" in n
            ):
                return True
            return False

        params = []
        for n, p in model.named_parameters():
            if valid_name(n):
                params.append(p)
            elif freeze_others:
                p.requires_grad_(False)
    elif args.training_parts == "ipadapter":
        params = [p for n, p in model.named_parameters() if "ip_adapter" in n]
        # print('params', params)
        if freeze_others:
            for n, p in model.named_parameters():
                if "ip_adapter" not in n:
                    p.requires_grad_(False)
                else:
                    pass
    else:
        raise ValueError(f"Unknown training_parts {args.training_parts}")
    return params


def set_seeds(seed_list, device=None):
    if isinstance(seed_list, (tuple, list)):
        seed = sum(seed_list)
    else:
        seed = seed_list
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)

    return torch.Generator(device).manual_seed(seed)


def get_start_epoch(resume_path, ckpt, steps_per_epoch):
    if "epoch" in ckpt:
        start_epoch = ckpt["epoch"]
    else:
        start_epoch = 0
    if "steps" in ckpt:
        train_steps = ckpt["steps"]
    else:
        try:
            train_steps = int(Path(resume_path).stem)
        except:
            train_steps = start_epoch * steps_per_epoch

    start_epoch_step = train_steps % steps_per_epoch + 1
    return start_epoch, start_epoch_step, train_steps


def assert_shape(*args):
    if len(args) < 2:
        return
    cond = True
    fail_str = f"{args[0] if isinstance(args[0], (list, tuple)) else args[0].shape}"
    for i in range(1, len(args)):
        shape1 = args[i] if isinstance(args[i], (list, tuple)) else args[i].shape
        shape2 = (
            args[i - 1] if isinstance(args[i - 1], (list, tuple)) else args[i - 1].shape
        )
        cond = cond and (shape1 == shape2)
        fail_str += (
            f" vs {args[i] if isinstance(args[i], (list, tuple)) else args[i].shape}"
        )
    assert cond, fail_str


def create_logger(logging_dir=None, logging_file=None, ddp=True):
    """
    Create a logger that writes to a log file and stdout.
    """
    if not ddp or (ddp and dist.get_rank() == 0):  # real logger
        if logging_file is not None:
            file_handler = [logging.FileHandler(logging_file)]
        elif logging_dir is not None:
            file_handler = [logging.FileHandler(f"{logging_dir}/log.txt")]
        else:
            file_handler = []
        logging.basicConfig(
            level=logging.INFO,
            format="[\033[34m%(asctime)s\033[0m] %(message)s",
            datefmt="%Y-%m-%d %H:%M:%S",
            handlers=[logging.StreamHandler()] + file_handler,
        )
        logger = logging.getLogger(__name__)
    else:
        logger = logging.getLogger(__name__)
        logger.addHandler(logging.NullHandler())
    return logger


def create_exp_folder(args, rank):
    if rank == 0:
        os.makedirs(args.results_dir, exist_ok=True)
    existed_experiments = list(Path(args.results_dir).glob("*dit*"))
    if len(existed_experiments) == 0:
        experiment_index = 1
    else:
        existed_experiments.sort()
        print("existed_experiments", existed_experiments)
        experiment_index = (
            max([int(x.stem.split("-")[0]) for x in existed_experiments]) + 1
        )
    dist.barrier()
    model_string_name = (
        args.task_flag if args.task_flag else args.model.replace("/", "-")
    )
    experiment_dir = f"{args.results_dir}/{experiment_index:03d}-{model_string_name}"  # Create an experiment folder
    checkpoint_dir = f"{experiment_dir}/checkpoints"  # Stores saved model checkpoints
    if rank == 0:
        os.makedirs(checkpoint_dir, exist_ok=True)
        logger = create_logger(experiment_dir)
        logger.info(f"Experiment directory created at {experiment_dir}")
    else:
        logger = create_logger()
        experiment_dir = ""

    return experiment_dir, checkpoint_dir, logger


def model_resume(args, model, ema, logger, len_loader):
    """
    Load pretrained weights.
    """
    start_epoch = 0
    start_epoch_step = 0
    train_steps = 0

    # Resume model
    if args.resume:
        resume_path = args.resume_module_root
        if not Path(resume_path).exists():
            raise FileNotFoundError(
                f"    Cannot find model checkpoint from {resume_path}"
            )
        logger.info(f"    Resume from checkpoint {resume_path}")
        resume_ckpt = torch.load(resume_path, map_location=lambda storage, loc: storage)
        if "module" in resume_ckpt.keys():
            model.load_state_dict(resume_ckpt["module"], strict=args.strict)
        else:
            model.load_state_dict(resume_ckpt, strict=args.strict)

    # Resume EMA model
    if args.use_ema:
        resume_ema_path = args.resume_ema_root
        if not Path(resume_ema_path).exists():
            raise FileNotFoundError(
                f"    Cannot find ema checkpoint from {resume_ema_path}"
            )
        logger.info(f"    Resume from ema checkpoint {resume_path}")
        resume_ema_ckpt = torch.load(
            resume_ema_path, map_location=lambda storage, loc: storage
        )
        if "ema" in resume_ema_ckpt.keys():
            ema.load_state_dict(resume_ema_ckpt["ema"], strict=args.strict)
        elif "module" in resume_ema_ckpt.keys():
            ema.load_state_dict(resume_ema_ckpt["module"], strict=args.strict)
        else:
            ema.load_state_dict(resume_ema_ckpt, strict=args.strict)

    if not args.reset_loader:
        start_epoch, start_epoch_step, train_steps = get_start_epoch(
            args.resume, resume_ckpt, len_loader
        )

    if args.resume_ipa:
        if Path(args.resume_ipa_root).exists():
            logger.info(f"    Resume from ipa checkpoint {args.resume_ipa_root}")
            ipa_state_dict = torch.load(
                args.resume_ipa_root, map_location=lambda storage, loc: storage
            )
            model.load_state_dict(ipa_state_dict, strict=False)
        else:
            raise FileNotFoundError(
                f"    Cannot find ipa-checkpoint from {args.resume_ipa_root}"
            )

    return model, ema, start_epoch, start_epoch_step, train_steps