engine.py 6.45 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#
# Copyright 2022 The HuggingFace Inc. team.
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
from collections import OrderedDict
from copy import copy

import numpy as np
import tensorrt as trt
import torch
from polygraphy import cuda
from polygraphy.backend.common import bytes_from_path
from polygraphy.backend.trt import CreateConfig, Profile
from polygraphy.backend.trt import (
    engine_from_bytes,
    engine_from_network,
    network_from_onnx_path,
    save_engine,
)
from polygraphy.backend.trt import util as trt_util
import ctypes
from glob import glob
from cuda import cudart

TRT_LOGGER = trt.Logger(trt.Logger.INFO)
trt_util.TRT_LOGGER = TRT_LOGGER


class Engine:
    def __init__(
        self,
        model_name,
        engine_dir,
        onnx_file=None,
    ):
        self.engine_path = os.path.join(engine_dir, model_name + ".plan")
        self.engine = None
        self.context = None
        self.buffers = OrderedDict()
        self.tensors = OrderedDict()

        self.weightNameList = None
        self.refitter = None
        self.onnx_initializers = None
        self.onnx_file = onnx_file
        self.trt_lora_weight = None
        self.trt_lora_weight_mem = None
        self.torch_weight = None

    def __del__(self):
        del self.engine
        del self.context
        del self.buffers
        del self.tensors

    def build(
        self,
        onnx_path,
        fp16,
        input_profile=None,
        enable_preview=False,
        sparse_weights=False,
    ):
        print(f"Building TensorRT engine for {onnx_path}: {self.engine_path}")
        p = Profile()
        if input_profile:
            for name, dims in input_profile.items():
                assert len(dims) == 3
                p.add(name, min=dims[0], opt=dims[1], max=dims[2])

        preview_features = []
        if enable_preview:
            trt_version = [int(i) for i in trt.__version__.split(".")]
            # FASTER_DYNAMIC_SHAPES_0805 should only be used for TRT 8.5.1 or above.
            if trt_version[0] > 8 or (
                trt_version[0] == 8
                and (
                    trt_version[1] > 5 or (trt_version[1] == 5 and trt_version[2] >= 1)
                )
            ):
                preview_features = [trt.PreviewFeature.FASTER_DYNAMIC_SHAPES_0805]

        engine = engine_from_network(
            network_from_onnx_path(onnx_path),
            config=CreateConfig(
                fp16=fp16,
                profiles=[p],
                preview_features=preview_features,
                sparse_weights=sparse_weights,
            ),
        )
        save_engine(engine, path=self.engine_path)

    def activate(self, plugin_path=""):
        ctypes.cdll.LoadLibrary(plugin_path)
        self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
        self.context = self.engine.create_execution_context()

    def get_shared_memory(self):
        _, device_memory = cudart.cudaMalloc(self.engine.device_memory_size)
        self.device_memory = device_memory
        return self.device_memory

    def set_shared_memory(self, device_memory_size):
        self.context.device_memory = device_memory_size

    def binding_input(self, name, shape):
        idx = self.engine.get_binding_index(name)
        result = self.context.set_binding_shape(idx, shape)
        return result

    def allocate_buffers(self, shape_dict=None, device="cuda"):
        print("Allocate buffers and bindings inputs:")
        for idx in range(trt_util.get_bindings_per_profile(self.engine)):
            binding = self.engine[idx]
            print("binding: ", binding)
            if shape_dict and binding in shape_dict:
                shape = shape_dict[binding]
            else:
                shape = self.engine.get_binding_shape(binding)
            nv_dtype = self.engine.get_binding_dtype(binding)
            dtype_map = {
                trt.DataType.FLOAT: np.float32,
                trt.DataType.HALF: np.float16,
                trt.DataType.INT8: np.int8,
                trt.DataType.INT64: np.int64,
                trt.DataType.BOOL: bool,
            }
            if hasattr(trt.DataType, "INT32"):
                dtype_map[trt.DataType.INT32] = np.int32
            dtype = dtype_map[nv_dtype]
            if self.engine.binding_is_input(binding):
                self.context.set_binding_shape(idx, shape)
            # Workaround to convert np dtype to torch
            np_type_tensor = np.empty(shape=[], dtype=dtype)
            torch_type_tensor = torch.from_numpy(np_type_tensor)
            tensor = torch.empty(tuple(shape), dtype=torch_type_tensor.dtype).to(
                device=device
            )

            print(f"  binding={binding}, shape={shape}, dtype={tensor.dtype}")
            self.tensors[binding] = tensor
            self.buffers[binding] = cuda.DeviceView(
                ptr=tensor.data_ptr(), shape=shape, dtype=dtype
            )

    def infer(self, feed_dict, stream):
        start_binding, end_binding = trt_util.get_active_profile_bindings(self.context)
        # shallow copy of ordered dict
        device_buffers = copy(self.buffers)
        for name, buf in feed_dict.items():
            assert isinstance(buf, cuda.DeviceView)
            device_buffers[name] = buf
            self.binding_input(name, buf.shape)
        bindings = [0] * start_binding + [buf.ptr for buf in device_buffers.values()]
        noerror = self.context.execute_async_v2(
            bindings=bindings, stream_handle=stream.ptr
        )
        if not noerror:
            raise ValueError(f"ERROR: inference failed.")

        for idx in range(trt_util.get_bindings_per_profile(self.engine)):
            binding = self.engine[idx]
            if not self.engine.binding_is_input(binding):
                shape = self.context.get_binding_shape(idx)
                self.tensors[binding].resize_(tuple(shape))
        return self.tensors