arrow_load_stream.py 11.5 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import pickle
import random
from pathlib import Path
import ast
import numpy as np
import re
import json
import time
from functools import partial
from PIL import Image

import torch
import torchvision.transforms as T
import torch.nn.functional as F
from torchvision.transforms import functional as TF
from torch.utils.data import Dataset

from IndexKits.index_kits import (
    ArrowIndexV2,
    MultiResolutionBucketIndexV2,
    MultiIndexV2,
)


class TextImageArrowStream(Dataset):
    def __init__(
        self,
        args,
        resolution=512,
        random_flip=None,
        enable_CN=True,
        log_fn=print,
        index_file=None,
        multireso=False,
        batch_size=-1,
        world_size=1,
        random_shrink_size_cond=False,
        merge_src_cond=False,
        uncond_p=0.0,
        uncond_p_img=0.0,
        text_ctx_len=77,
        tokenizer=None,
        uncond_p_t5=0.0,
        text_ctx_len_t5=256,
        tokenizer_t5=None,
    ):
        self.args = args
        self.resolution = resolution
        self.log_fn = lambda x: log_fn(f"    {Path(__file__).stem} | " + x)

        self.random_flip = random_flip
        # If true, the Chinese prompt from the `text_zh` column will be taken from the arrow file;
        # otherwise, the English prompt from the `text_en` column will be taken,
        # provided that `text_zh` or `text_en` exists in the arrow file.
        self.enable_CN = enable_CN
        self.index_file = index_file
        self.multireso = multireso
        self.batch_size = batch_size
        self.world_size = world_size
        self.index_manager = self.load_index()

        # clip params
        self.uncond_p = uncond_p
        self.text_ctx_len = text_ctx_len
        self.tokenizer = tokenizer

        self.uncond_p_img = uncond_p_img

        # t5 params
        self.uncond_p_t5 = uncond_p_t5
        self.text_ctx_len_t5 = text_ctx_len_t5
        self.tokenizer_t5 = tokenizer_t5

        # size condition
        self.random_shrink_size_cond = random_shrink_size_cond
        self.merge_src_cond = merge_src_cond
        self.is_ipa = args.is_ipa

        assert isinstance(
            resolution, int
        ), f"resolution must be an integer, got {resolution}"
        self.flip_norm = T.Compose(
            [
                T.RandomHorizontalFlip() if self.random_flip else T.Lambda(lambda x: x),
                T.ToTensor(),
                T.Normalize([0.5], [0.5]),
            ]
        )

        self.ti2i_transform = T.Compose(
            [
                T.Resize((224, 224), interpolation=T.InterpolationMode.BICUBIC),
                lambda x: x.convert("RGB"),
                T.ToTensor(),
                T.Normalize(
                    (0.48145466, 0.4578275, 0.40821073),
                    (0.26862954, 0.26130258, 0.27577711),
                ),
            ]
        )

        # show info
        if self.merge_src_cond:
            self.log_fn(
                "Enable merging src condition: (oriW, oriH) --> ((WH)**0.5, (WH)**0.5)"
            )

        self.log_fn(
            "Enable image_meta_size condition (original_size, target_size, crop_coords)"
        )
        self.log_fn(f"Image_transforms: {self.flip_norm}")

    def load_index(self):
        multireso = self.multireso
        index_file = self.index_file
        batch_size = self.batch_size
        world_size = self.world_size

        if multireso:
            if isinstance(index_file, (list, tuple)):
                if len(index_file) > 1:
                    raise ValueError(
                        f"When enabling multireso, index_file should be a single file, but got {index_file}"
                    )
                index_file = index_file[0]
            index_manager = MultiResolutionBucketIndexV2(
                index_file, batch_size, world_size
            )
            self.log_fn(f"Using MultiResolutionBucketIndexV2: {len(index_manager):,}")
        else:
            if isinstance(index_file, str):
                index_file = [index_file]
            if len(index_file) == 1:
                index_manager = ArrowIndexV2(index_file[0])
                self.log_fn(f"Using ArrowIndexV2: {len(index_manager):,}")
            else:
                index_manager = MultiIndexV2(index_file)
                self.log_fn(f"Using MultiIndexV2: {len(index_manager):,}")

        return index_manager

    def shuffle(self, seed, fast=False):
        self.index_manager.shuffle(seed, fast=fast)

    def get_raw_image(self, index, image_key="image"):
        try:
            ret = self.index_manager.get_image(index, image_key)
        except Exception as e:
            self.log_fn(f"get_raw_image | Error: {e}")
            ret = Image.new("RGB", (256, 256), (255, 255, 255))
        return ret

    @staticmethod
    def random_crop_image(image, origin_size, target_size):
        aspect_ratio = float(origin_size[0]) / float(origin_size[1])
        if origin_size[0] < origin_size[1]:
            new_width = target_size[0]
            new_height = int(new_width / aspect_ratio)
        else:
            new_height = target_size[1]
            new_width = int(new_height * aspect_ratio)

        image = image.resize((new_width, new_height), Image.LANCZOS)

        if new_width > target_size[0]:
            x_start = random.randint(0, new_width - target_size[0])
            y_start = 0
        else:
            x_start = 0
            y_start = random.randint(0, new_height - target_size[1])
        image_crop = image.crop(
            (x_start, y_start, x_start + target_size[0], y_start + target_size[1])
        )
        crops_coords_top_left = (x_start, y_start)
        return image_crop, crops_coords_top_left

    def get_style(self, index):
        "Here we use a default learned embedder layer for future extension."
        style = 0
        return style

    def get_image_with_hwxy(self, index, image_key="image"):

        image = self.get_raw_image(index, image_key=image_key)
        origin_size = image.size

        if self.multireso:
            target_size = self.index_manager.get_target_size(index)
            image, crops_coords_top_left = self.index_manager.resize_and_crop(
                image, target_size, resample=Image.LANCZOS, crop_type="random"
            )
            image_tensor = self.flip_norm(image)
            if self.is_ipa:
                img_for_clip_tensor = self.ti2i_transform(image)
        else:
            target_size = (self.resolution, self.resolution)
            image_crop, crops_coords_top_left = self.random_crop_image(
                image, origin_size, target_size
            )
            image_tensor = self.flip_norm(image_crop)
            if self.is_ipa:
                img_for_clip_tensor = self.ti2i_transform(image)

        if self.random_shrink_size_cond:
            origin_size = (
                1024 if origin_size[0] < 1024 else origin_size[0],
                1024 if origin_size[1] < 1024 else origin_size[1],
            )
        if self.merge_src_cond:
            val = (origin_size[0] * origin_size[1]) ** 0.5
            origin_size = (val, val)

        image_meta_size = (
            tuple(origin_size) + tuple(target_size) + tuple(crops_coords_top_left)
        )
        kwargs = {
            "image_meta_size": image_meta_size,
        }

        style = self.get_style(index)
        kwargs["style"] = style
        if self.is_ipa:
            return image_tensor, img_for_clip_tensor, kwargs
        else:
            return image_tensor, kwargs

    def get_text_info_with_encoder(self, description):
        pad_num = 0
        text_inputs = self.tokenizer(
            description,
            padding="max_length",
            max_length=self.text_ctx_len,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids[0]
        attention_mask = text_inputs.attention_mask[0].bool()
        if pad_num > 0:
            attention_mask[1 : pad_num + 1] = False
        return description, text_input_ids, attention_mask

    def fill_t5_token_mask(self, fill_tensor, fill_number, setting_length):
        fill_length = setting_length - fill_tensor.shape[1]
        if fill_length > 0:
            fill_tensor = torch.cat(
                (fill_tensor, fill_number * torch.ones(1, fill_length)), dim=1
            )
        return fill_tensor

    def get_text_info_with_encoder_t5(self, description_t5):
        text_tokens_and_mask = self.tokenizer_t5(
            description_t5,
            max_length=self.text_ctx_len_t5,
            truncation=True,
            return_attention_mask=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids_t5 = self.fill_t5_token_mask(
            text_tokens_and_mask["input_ids"],
            fill_number=1,
            setting_length=self.text_ctx_len_t5,
        ).long()
        attention_mask_t5 = self.fill_t5_token_mask(
            text_tokens_and_mask["attention_mask"],
            fill_number=0,
            setting_length=self.text_ctx_len_t5,
        ).bool()
        return description_t5, text_input_ids_t5, attention_mask_t5

    def get_original_text(self, ind):
        text = ""
        try:
            text = self.index_manager.get_attribute(
                ind, "text_zh" if self.enable_CN else "text_en"
            )
        except:
            self.log_fn(f"Warning! Fail get text_zh columns")
        text = str(text).strip()
        return text

    def get_text(self, ind):
        text = self.get_original_text(ind)
        if text == "":
            text = "随机生成一张图片"
        return text

    def __getitem__(self, ind):
        # Get text
        if random.random() < self.uncond_p:
            description = ""
        else:
            description = self.get_text(ind)

        # Get text for t5
        if random.random() < self.uncond_p_t5:
            description_t5 = ""
        else:
            description_t5 = self.get_text(ind)

        if random.random() < self.uncond_p_img:
            img_for_clip_tensor = torch.zeros_like(img_for_clip_tensor)
        if self.is_ipa:
            original_pil_image, img_for_clip_tensor, kwargs = self.get_image_with_hwxy(
                ind
            )
        else:
            original_pil_image, kwargs = self.get_image_with_hwxy(ind)

        # Use encoder to embed tokens online
        text, text_embedding, text_embedding_mask = self.get_text_info_with_encoder(
            description
        )

        text_t5, text_embedding_t5, text_embedding_mask_t5 = (
            self.get_text_info_with_encoder_t5(description_t5)
        )
        if self.is_ipa:
            return (
                original_pil_image,
                text_embedding.clone().detach(),
                text_embedding_mask.clone().detach(),
                text_embedding_t5.clone().detach(),
                text_embedding_mask_t5.clone().detach(),
                img_for_clip_tensor.clone().detach(),
                {
                    k: torch.tensor(np.array(v)).clone().detach()
                    for k, v in kwargs.items()
                },
            )
        else:
            return (
                original_pil_image,
                text_embedding.clone().detach(),
                text_embedding_mask.clone().detach(),
                text_embedding_t5.clone().detach(),
                text_embedding_mask_t5.clone().detach(),
                {
                    k: torch.tensor(np.array(v)).clone().detach()
                    for k, v in kwargs.items()
                },
            )

    def __len__(self):
        return len(self.index_manager)