__init__.py 4.8 KB
Newer Older
jerrrrry's avatar
jerrrrry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)

import os
import random

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

import torch
import numpy as np
from . import util
from .wholebody import Wholebody


def draw_pose(pose, H, W, draw_body=True):
    bodies = pose["bodies"]
    faces = pose["faces"]
    hands = pose["hands"]
    candidate = bodies["candidate"]
    subset = bodies["subset"]
    canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)

    if draw_body:
        canvas = util.draw_bodypose(canvas, candidate, subset)

    canvas = util.draw_handpose(canvas, hands)

    canvas = util.draw_facepose(canvas, faces)

    return canvas


def keypoint2bbox(keypoints):
    valid_keypoints = keypoints[
        keypoints[:, 0] >= 0
    ]  # Ignore keypoints with confidence 0
    if len(valid_keypoints) == 0:
        return np.zeros(4)
    x_min, y_min = np.min(valid_keypoints, axis=0)
    x_max, y_max = np.max(valid_keypoints, axis=0)

    return np.array([x_min, y_min, x_max, y_max])


def expand_bboxes(bboxes, expansion_rate=0.5, image_shape=(0, 0)):
    expanded_bboxes = []
    for bbox in bboxes:
        x_min, y_min, x_max, y_max = map(int, bbox)
        width = x_max - x_min
        height = y_max - y_min

        # 扩展宽度和高度
        new_width = width * (1 + expansion_rate)
        new_height = height * (1 + expansion_rate)

        # 计算新的边界框坐标
        x_min_new = max(0, x_min - (new_width - width) / 2)
        x_max_new = min(image_shape[1], x_max + (new_width - width) / 2)
        y_min_new = max(0, y_min - (new_height - height) / 2)
        y_max_new = min(image_shape[0], y_max + (new_height - height) / 2)

        expanded_bboxes.append([x_min_new, y_min_new, x_max_new, y_max_new])

    return expanded_bboxes


def create_mask(image_width, image_height, bboxs):
    mask = np.zeros((image_height, image_width), dtype=np.float32)
    for bbox in bboxs:
        x1, y1, x2, y2 = map(int, bbox)
        mask[y1 : y2 + 1, x1 : x2 + 1] = 1.0
    return mask


threshold = 0.4


class DWposeDetector:
    def __init__(self):

        self.pose_estimation = Wholebody()

    def __call__(
        self, oriImg, return_index=False, return_yolo=False, return_mask=False
    ):
        oriImg = oriImg.copy()
        H, W, C = oriImg.shape
        with torch.no_grad():
            candidate, subset = self.pose_estimation(oriImg)
            candidate = (
                np.zeros((1, 134, 2), dtype=np.float32)
                if candidate is None
                else candidate
            )
            subset = np.zeros((1, 134), dtype=np.float32) if subset is None else subset
            nums, keys, locs = candidate.shape
            candidate[..., 0] /= float(W)
            candidate[..., 1] /= float(H)
            # import pdb; pdb.set_trace()
            if return_yolo:
                candidate[subset < threshold] = -0.1
                subset = np.expand_dims(subset >= threshold, axis=-1)
                keypoint = np.concatenate([candidate, subset], axis=-1)

                # return pose + hand
                return np.concatenate([keypoint[:, :18], keypoint[:, 92:]], axis=1)

            body = candidate[:, :18].copy()
            body = body.reshape(nums * 18, locs)
            score = subset[:, :18]
            for i in range(len(score)):
                for j in range(len(score[i])):
                    if score[i][j] > threshold:
                        score[i][j] = int(18 * i + j)
                    else:
                        score[i][j] = -1

            un_visible = subset < threshold
            candidate[un_visible] = -1

            foot = candidate[:, 18:24]

            faces = candidate[:, 24:92]

            hands1 = candidate[:, 92:113]
            hands2 = candidate[:, 113:]
            hands = np.vstack([hands1, hands2])

            # import pdb; pdb.set_trace()
            hands_ = hands[hands.max(axis=(1, 2)) > 0]
            if len(hands_) == 0:
                bbox = np.array([0, 0, 0, 0]).astype(int)
            else:
                hand_random = random.choice(hands_)
                bbox = (keypoint2bbox(hand_random) * H).astype(int)  # [0, 1] -> [h, w]

            bodies = dict(candidate=body, subset=score)
            pose = dict(bodies=bodies, hands=hands, faces=faces)

            if return_mask:
                bbox = [(keypoint2bbox(hand) * H).astype(int) for hand in hands_]
                # bbox = expand_bboxes(bbox, expansion_rate=0.5, image_shape=(H, W))
                mask = create_mask(W, H, bbox)
                return draw_pose(pose, H, W), mask

            if return_index:
                return pose
            else:
                return draw_pose(pose, H, W), bbox