task_relation_extraction_gplinker.py 10.9 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#! -*- coding:utf-8 -*-
# 三元组抽取任务,基于GlobalPointer的仿TPLinker设计
# 文章介绍:https://kexue.fm/archives/8888
# 数据集:http://ai.baidu.com/broad/download?dataset=sked

import json
from bert4torch.layers import GlobalPointer
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, Callback, ListDataset
from bert4torch.losses import SparseMultilabelCategoricalCrossentropy
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
import numpy as np

maxlen = 128
batch_size = 64
config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# 加载标签字典
predicate2id, id2predicate = {}, {}

with open('F:/Projects/data/corpus/relation_extraction/BD_Knowledge_Extraction/all_50_schemas', encoding='utf-8') as f:
    for l in f:
        l = json.loads(l)
        if l['predicate'] not in predicate2id:
            id2predicate[len(predicate2id)] = l['predicate']
            predicate2id[l['predicate']] = len(predicate2id)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

# 加载数据集
class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        """加载数据
        单条格式:{'text': text, 'spo_list': [(s, p, o)]}
        """
        D = []
        with open(filename, encoding='utf-8') as f:
            for l in f:
                l = json.loads(l)
                D.append({'text': l['text'],
                          'spo_list': [(spo['subject'], spo['predicate'], spo['object']) for spo in l['spo_list']]})
        return D

def collate_fn(batch):
    def search(pattern, sequence):
        """从sequence中寻找子串pattern
        如果找到,返回第一个下标;否则返回-1。
        """
        n = len(pattern)
        for i in range(len(sequence)):
            if sequence[i:i + n] == pattern:
                return i
        return -1

    batch_token_ids, batch_segment_ids = [], []
    batch_entity_labels, batch_head_labels, batch_tail_labels = [], [], []
    for d in batch:
        token_ids, segment_ids = tokenizer.encode(d['text'], maxlen=maxlen)
        # 整理三元组 {s: [(o, p)]}
        spoes = set()
        for s, p, o in d['spo_list']:
            s = tokenizer.encode(s)[0][1:-1]
            p = predicate2id[p]
            o = tokenizer.encode(o)[0][1:-1]
            sh = search(s, token_ids)
            oh = search(o, token_ids)
            if sh != -1 and oh != -1:
                spoes.add((sh, sh + len(s) - 1, p, oh, oh + len(o) - 1))
        # 构建标签
        entity_labels = [set() for _ in range(2)]
        head_labels = [set() for _ in range(len(predicate2id))]
        tail_labels = [set() for _ in range(len(predicate2id))]
        for sh, st, p, oh, ot in spoes:
            entity_labels[0].add((sh, st))
            entity_labels[1].add((oh, ot))
            head_labels[p].add((sh, oh))
            tail_labels[p].add((st, ot))
        for label in entity_labels + head_labels + tail_labels:
            if not label:  # 至少要有一个标签
                label.add((0, 0))  # 如果没有则用0填充
        entity_labels = sequence_padding([list(l) for l in entity_labels])  # [subject/object=2, 实体个数, 实体起终点]
        head_labels = sequence_padding([list(l) for l in head_labels])  # [关系个数, 该关系下subject/object配对数, subject/object起点]
        tail_labels = sequence_padding([list(l) for l in tail_labels])  # [关系个数, 该关系下subject/object配对数, subject/object终点]
        # 构建batch
        batch_token_ids.append(token_ids)
        batch_segment_ids.append(segment_ids)
        batch_entity_labels.append(entity_labels)
        batch_head_labels.append(head_labels)
        batch_tail_labels.append(tail_labels)

    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
    # batch_entity_labels: [btz, subject/object=2, 实体个数, 实体起终点]
    # batch_head_labels: [btz, 关系个数, 该关系下subject/object配对数, subject/object起点]
    # batch_tail_labels: [btz, 关系个数, 该关系下subject/object配对数, subject/object终点]
    batch_entity_labels = torch.tensor(sequence_padding(batch_entity_labels, seq_dims=2), dtype=torch.float, device=device)
    batch_head_labels = torch.tensor(sequence_padding(batch_head_labels, seq_dims=2), dtype=torch.float, device=device)
    batch_tail_labels = torch.tensor(sequence_padding(batch_tail_labels, seq_dims=2), dtype=torch.float, device=device)
    return [batch_token_ids, batch_segment_ids], [batch_entity_labels, batch_head_labels, batch_tail_labels]

train_dataloader = DataLoader(MyDataset('F:/Projects/data/corpus/relation_extraction/BD_Knowledge_Extraction/train_data.json'), 
                   batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
valid_dataset = MyDataset('F:/Projects/data/corpus/relation_extraction/BD_Knowledge_Extraction/dev_data.json')
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate_fn) 


# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.bert = build_transformer_model(config_path, checkpoint_path)
        self.entity_output = GlobalPointer(hidden_size=768, heads=2, head_size=64)
        self.head_output = GlobalPointer(hidden_size=768, heads=len(predicate2id), head_size=64, RoPE=False, tril_mask=False)
        self.tail_output = GlobalPointer(hidden_size=768, heads=len(predicate2id), head_size=64, RoPE=False, tril_mask=False)

    def forward(self, inputs):
        hidden_states = self.bert(inputs)  # [btz, seq_len, hdsz]
        mask = inputs[0].gt(0).long()

        entity_output = self.entity_output(hidden_states, mask)  # [btz, heads, seq_len, seq_len]
        head_output = self.head_output(hidden_states, mask)  # [btz, heads, seq_len, seq_len]
        tail_output = self.tail_output(hidden_states, mask)  # [btz, heads, seq_len, seq_len]
        return entity_output, head_output, tail_output
    

model = Model().to(device)

class MyLoss(SparseMultilabelCategoricalCrossentropy):
    def __init__(self, **kwargs): 
        super().__init__(**kwargs)
    def forward(self, y_preds, y_trues):
        ''' y_preds: [Tensor], shape为[btz, heads, seq_len ,seq_len]
        '''
        loss_list = []
        for y_pred, y_true in zip(y_preds, y_trues):
            shape = y_pred.shape
            # 乘以seq_len是因为(i, j)在展开到seq_len*seq_len维度对应的下标是i*seq_len+j
            y_true = y_true[..., 0] * shape[2] + y_true[..., 1]  # [btz, heads, 实体起终点的下标]
            y_pred = y_pred.reshape(shape[0], -1, np.prod(shape[2:]))  # [btz, heads, seq_len*seq_len]
            loss = super().forward(y_pred, y_true.long())
            loss = torch.mean(torch.sum(loss, dim=1))
            loss_list.append(loss)
        return {'loss': sum(loss_list)/3, 'entity_loss': loss_list[0], 'head_loss': loss_list[1], 'tail_loss': loss_list[2]}

model.compile(loss=MyLoss(mask_zero=True), optimizer=optim.Adam(model.parameters(), 1e-5), metrics=['entity_loss', 'head_loss', 'tail_loss'])

def extract_spoes(text, threshold=0):
    """抽取输入text所包含的三元组
    """
    tokens = tokenizer.tokenize(text, maxlen=maxlen)
    mapping = tokenizer.rematch(text, tokens)
    token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
    token_ids = torch.tensor([token_ids], dtype=torch.long, device=device)
    segment_ids = torch.tensor([segment_ids], dtype=torch.long, device=device)
    outputs = model.predict([token_ids, segment_ids])
    outputs = [o[0].cpu().numpy() for o in outputs]  # [heads, seq_len, seq_len]
    # 抽取subject和object
    subjects, objects = set(), set()
    outputs[0][:, [0, -1]] -= float('inf')
    outputs[0][:, :, [0, -1]] -= float('inf')
    for l, h, t in zip(*np.where(outputs[0] > threshold)):
        if l == 0:
            subjects.add((h, t))
        else:
            objects.add((h, t))
    # 识别对应的predicate
    spoes = set()
    for sh, st in subjects:
        for oh, ot in objects:
            p1s = np.where(outputs[1][:, sh, oh] > threshold)[0]
            p2s = np.where(outputs[2][:, st, ot] > threshold)[0]
            ps = set(p1s) & set(p2s)
            for p in ps:
                spoes.add((
                    text[mapping[sh][0]:mapping[st][-1] + 1], id2predicate[p],
                    text[mapping[oh][0]:mapping[ot][-1] + 1]
                ))
    return list(spoes)


class SPO(tuple):
    """用来存三元组的类
    表现跟tuple基本一致,只是重写了 __hash__ 和 __eq__ 方法,
    使得在判断两个三元组是否等价时容错性更好。
    """
    def __init__(self, spo):
        self.spox = (tuple(tokenizer.tokenize(spo[0])), spo[1], tuple(tokenizer.tokenize(spo[2])))

    def __hash__(self):
        return self.spox.__hash__()

    def __eq__(self, spo):
        return self.spox == spo.spox


def evaluate(data):
    """评估函数,计算f1、precision、recall
    """
    X, Y, Z = 0, 1e-10, 1e-10
    f = open('dev_pred.json', 'w', encoding='utf-8')
    pbar = tqdm()
    for d in data:
        R = set([SPO(spo) for spo in extract_spoes(d['text'])])
        T = set([SPO(spo) for spo in d['spo_list']])
        X += len(R & T)
        Y += len(R)
        Z += len(T)
        f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
        pbar.update()
        pbar.set_description('f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall))
        s = json.dumps({'text': d['text'], 'spo_list': list(T), 'spo_list_pred': list(R),
                        'new': list(R - T), 'lack': list(T - R)}, ensure_ascii=False, indent=4)
        f.write(s + '\n')
    pbar.close()
    f.close()
    return f1, precision, recall


class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_f1 = 0.

    def on_epoch_end(self, steps, epoch, logs=None):
        # optimizer.apply_ema_weights()
        f1, precision, recall = evaluate(valid_dataset.data)
        if f1 >= self.best_val_f1:
            self.best_val_f1 = f1
            # model.save_weights('best_model.pt')
        # optimizer.reset_old_weights()
        print('f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %(f1, precision, recall, self.best_val_f1))


if __name__ == '__main__':
    evaluator = Evaluator()
    model.fit(train_dataloader, steps_per_epoch=None, epochs=20, callbacks=[evaluator])
else:
    model.load_weights('best_model.pt')