task_relation_extraction_CasRel.py 12.8 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#! -*- coding:utf-8 -*-
# 三元组抽取任务,基于“半指针-半标注”结构
# 文章介绍:https://kexue.fm/archives/7161
# 数据集:http://ai.baidu.com/broad/download?dataset=sked

import json
import numpy as np
from bert4torch.layers import LayerNorm
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, Callback, ListDataset
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader, Dataset
import torch.optim as optim
import torch.nn as nn

maxlen = 128
batch_size = 64
config_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/bert_config.json'
checkpoint_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/pytorch_model.bin'
dict_path = 'F:/Projects/pretrain_ckpt/bert/[google_tf_base]--chinese_L-12_H-768_A-12/vocab.txt'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# 加载标签字典
predicate2id, id2predicate = {}, {}

with open('F:/Projects/data/corpus/relation_extraction/BD_Knowledge_Extraction/all_50_schemas', encoding='utf-8') as f:
    for l in f:
        l = json.loads(l)
        if l['predicate'] not in predicate2id:
            id2predicate[len(predicate2id)] = l['predicate']
            predicate2id[l['predicate']] = len(predicate2id)

# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)

# 加载数据集
class MyDataset(ListDataset):
    @staticmethod
    def load_data(filename):
        """加载数据
        单条格式:{'text': text, 'spo_list': [(s, p, o)]}
        """
        D = []
        with open(filename, encoding='utf-8') as f:
            for l in f:
                l = json.loads(l)
                D.append({'text': l['text'],
                          'spo_list': [(spo['subject'], spo['predicate'], spo['object']) for spo in l['spo_list']]})
        return D

def collate_fn(batch):
    def search(pattern, sequence):
        """从sequence中寻找子串pattern
        如果找到,返回第一个下标;否则返回-1。
        """
        n = len(pattern)
        for i in range(len(sequence)):
            if sequence[i:i + n] == pattern:
                return i
        return -1

    batch_token_ids, batch_segment_ids = [], []
    batch_subject_labels, batch_subject_ids, batch_object_labels = [], [], []
    for d in batch:
        token_ids, segment_ids = tokenizer.encode(d['text'], maxlen=maxlen)
        # 整理三元组 {s: [(o, p)]}
        spoes = {}
        for s, p, o in d['spo_list']:
            s = tokenizer.encode(s)[0][1:-1]
            p = predicate2id[p]
            o = tokenizer.encode(o)[0][1:-1]
            s_idx = search(s, token_ids)
            o_idx = search(o, token_ids)
            if s_idx != -1 and o_idx != -1:
                s = (s_idx, s_idx + len(s) - 1)
                o = (o_idx, o_idx + len(o) - 1, p)
                if s not in spoes:
                    spoes[s] = []
                spoes[s].append(o)
        if spoes:
            # subject标签
            subject_labels = np.zeros((len(token_ids), 2))
            for s in spoes:
                subject_labels[s[0], 0] = 1  # subject首
                subject_labels[s[1], 1] = 1  # subject尾
            # 随机选一个subject(这里没有实现错误!这就是想要的效果!!)
            # Todo: 感觉可以对未选到的subject加个mask,这样计算loss就不会计算到,可能因为模型对prob**n正例加权重导致影响不大
            start, end = np.array(list(spoes.keys())).T
            start = np.random.choice(start)
            end = np.random.choice(end[end >= start])
            subject_ids = (start, end)
            # 对应的object标签
            object_labels = np.zeros((len(token_ids), len(predicate2id), 2))
            for o in spoes.get(subject_ids, []):
                object_labels[o[0], o[2], 0] = 1
                object_labels[o[1], o[2], 1] = 1
            # 构建batch
            batch_token_ids.append(token_ids)
            batch_segment_ids.append(segment_ids)
            batch_subject_labels.append(subject_labels)
            batch_subject_ids.append(subject_ids)
            batch_object_labels.append(object_labels)
    batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
    batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
    batch_subject_labels = torch.tensor(sequence_padding(batch_subject_labels), dtype=torch.float, device=device)
    batch_subject_ids = torch.tensor(batch_subject_ids, dtype=torch.long, device=device)
    batch_object_labels = torch.tensor(sequence_padding(batch_object_labels), dtype=torch.float, device=device)
    batch_attention_mask = (batch_token_ids != tokenizer._token_pad_id)
    return [batch_token_ids, batch_segment_ids, batch_subject_ids], [batch_subject_labels, batch_object_labels, batch_attention_mask]

train_dataloader = DataLoader(MyDataset('F:/Projects/data/corpus/relation_extraction/BD_Knowledge_Extraction/train_data.json'), 
                   batch_size=batch_size, shuffle=True, collate_fn=collate_fn) 
valid_dataset = MyDataset('F:/Projects/data/corpus/relation_extraction/BD_Knowledge_Extraction/dev_data.json')
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate_fn) 


# 定义bert上的模型结构
class Model(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.bert = build_transformer_model(config_path, checkpoint_path)
        self.linear1 = nn.Linear(768, 2)
        self.condLayerNorm = LayerNorm(hidden_size=768, conditional_size=768*2)
        self.linear2 = nn.Linear(768, len(predicate2id)*2)

    @staticmethod
    def extract_subject(inputs):
        """根据subject_ids从output中取出subject的向量表征
        """
        output, subject_ids = inputs
        start = torch.gather(output, dim=1, index=subject_ids[:, :1].unsqueeze(2).expand(-1, -1, output.shape[-1]))
        end = torch.gather(output, dim=1, index=subject_ids[:, 1:].unsqueeze(2).expand(-1, -1, output.shape[-1]))
        subject = torch.cat([start, end], 2)
        return subject[:, 0]

    def forward(self, inputs):
        # 预测subject
        seq_output = self.bert(inputs[:2])  # [btz, seq_len, hdsz]
        subject_preds = (torch.sigmoid(self.linear1(seq_output)))**2  # [btz, seq_len, 2]

        # 传入subject,预测object
        # 通过Conditional Layer Normalization将subject融入到object的预测中
        subject_ids = inputs[2]
        # 理论上应该用LayerNorm前的,但是这样只能返回各个block顶层输出,这里和keras实现不一致
        subject = self.extract_subject([seq_output, subject_ids])
        output = self.condLayerNorm([seq_output, subject])
        output = (torch.sigmoid(self.linear2(output)))**4
        object_preds = output.reshape(*output.shape[:2], len(predicate2id), 2)

        return [subject_preds, object_preds]
    
    def predict_subject(self, inputs):
        self.eval()
        with torch.no_grad():
            seq_output = self.bert(inputs[:2])  # [btz, seq_len, hdsz]
            subject_preds = (torch.sigmoid(self.linear1(seq_output)))**2  # [btz, seq_len, 2]
        return [seq_output, subject_preds]
    
    def predict_object(self, inputs):
        self.eval()
        with torch.no_grad():
            seq_output, subject_ids = inputs
            subject = self.extract_subject([seq_output, subject_ids])
            output = self.condLayerNorm([seq_output, subject])
            output = (torch.sigmoid(self.linear2(output)))**4
            object_preds = output.reshape(*output.shape[:2], len(predicate2id), 2)
        return object_preds


train_model = Model().to(device)

class BCELoss(nn.BCELoss):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
    def forward(self, inputs, targets):
        subject_preds, object_preds = inputs
        subject_labels, object_labels, mask = targets

        # sujuect部分loss
        subject_loss = super().forward(subject_preds, subject_labels)
        subject_loss = subject_loss.mean(dim=-1)
        subject_loss = (subject_loss * mask).sum() / mask.sum()
        # object部分loss
        object_loss = super().forward(object_preds, object_labels)
        object_loss = object_loss.mean(dim=-1).sum(dim=-1)
        object_loss = (object_loss * mask).sum() / mask.sum()
        return subject_loss + object_loss

train_model.compile(loss=BCELoss(reduction='none'), optimizer=optim.Adam(train_model.parameters(), 1e-5))

def extract_spoes(text):
    """抽取输入text所包含的三元组
    """
    tokens = tokenizer.tokenize(text, maxlen=maxlen)
    mapping = tokenizer.rematch(text, tokens)
    token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
    token_ids = torch.tensor([token_ids], dtype=torch.long, device=device)
    segment_ids = torch.tensor([segment_ids], dtype=torch.long, device=device)

    # 抽取subject
    seq_output, subject_preds = train_model.predict_subject([token_ids, segment_ids])
    subject_preds[:, [0, -1]] *= 0  # 首cls, 尾sep置为0
    start = torch.where(subject_preds[0, :, 0] > 0.6)[0]
    end = torch.where(subject_preds[0, :, 1] > 0.5)[0]
    subjects = []
    for i in start:
        j = end[end >= i]
        if len(j) > 0:
            j = j[0]
            subjects.append((i.item(), j.item()))
    if subjects:
        spoes = []
        # token_ids = token_ids.repeat([len(subjects)]+[1]*(len(token_ids.shape)-1))
        # segment_ids = segment_ids.repeat([len(subjects)]+[1]*(len(token_ids.shape)-1))
        seq_output = seq_output.repeat([len(subjects)]+[1]*(len(seq_output.shape)-1))
        subjects = torch.tensor(subjects, dtype=torch.long, device=device)
        # 传入subject,抽取object和predicate
        object_preds = train_model.predict_object([seq_output, subjects])
        object_preds[:, [0, -1]] *= 0
        for subject, object_pred in zip(subjects, object_preds):
            start = torch.where(object_pred[:, :, 0] > 0.6)
            end = torch.where(object_pred[:, :, 1] > 0.5)
            for _start, predicate1 in zip(*start):
                for _end, predicate2 in zip(*end):
                    if _start <= _end and predicate1 == predicate2:
                        spoes.append(
                            ((mapping[subject[0]][0],
                              mapping[subject[1]][-1]), predicate1.item(),
                             (mapping[_start][0], mapping[_end][-1]))
                        )
                        break
        return [(text[s[0]:s[1] + 1], id2predicate[p], text[o[0]:o[1] + 1])
                for s, p, o, in spoes]
    else:
        return []


class SPO(tuple):
    """用来存三元组的类
    表现跟tuple基本一致,只是重写了 __hash__ 和 __eq__ 方法,
    使得在判断两个三元组是否等价时容错性更好。
    """
    def __init__(self, spo):
        self.spox = (
            tuple(tokenizer.tokenize(spo[0])),
            spo[1],
            tuple(tokenizer.tokenize(spo[2])),
        )

    def __hash__(self):
        return self.spox.__hash__()

    def __eq__(self, spo):
        return self.spox == spo.spox


def evaluate(data):
    """评估函数,计算f1、precision、recall
    """
    X, Y, Z = 1e-10, 1e-10, 1e-10
    f = open('dev_pred.json', 'w', encoding='utf-8')
    pbar = tqdm()
    for d in data:
        R = set([SPO(spo) for spo in extract_spoes(d['text'])])
        T = set([SPO(spo) for spo in d['spo_list']])
        X += len(R & T)
        Y += len(R)
        Z += len(T)
        f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
        pbar.update()
        pbar.set_description(
            'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
        )
        s = json.dumps({
            'text': d['text'],
            'spo_list': list(T),
            'spo_list_pred': list(R),
            'new': list(R - T),
            'lack': list(T - R),
        },
                       ensure_ascii=False,
                       indent=4)
        f.write(s + '\n')
    pbar.close()
    f.close()
    return f1, precision, recall


class Evaluator(Callback):
    """评估与保存
    """
    def __init__(self):
        self.best_val_f1 = 0.

    def on_epoch_end(self, steps, epoch, logs=None):
        # optimizer.apply_ema_weights()
        f1, precision, recall = evaluate(valid_dataset.data)
        if f1 >= self.best_val_f1:
            self.best_val_f1 = f1
            # train_model.save_weights('best_model.pt')
        # optimizer.reset_old_weights()
        print(
            'f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %
            (f1, precision, recall, self.best_val_f1)
        )


if __name__ == '__main__':

    evaluator = Evaluator()

    train_model.fit(train_dataloader, steps_per_epoch=None, epochs=20, callbacks=[evaluator])

else:

    train_model.load_weights('best_model.pt')