common.py 2.96 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
import json
import os
from typing import Any, Dict, Optional

import gradio as gr
from peft.utils import WEIGHTS_NAME as PEFT_WEIGHTS_NAME
from transformers.trainer import WEIGHTS_NAME, WEIGHTS_INDEX_NAME

9
from llmtuner.extras.constants import DEFAULT_TEMPLATE, SUPPORTED_MODELS, TRAINING_STAGES
zhaoying1's avatar
zhaoying1 committed
10
11
12
13
14
15
16
17
18


DEFAULT_CACHE_DIR = "cache"
DEFAULT_DATA_DIR = "data"
DEFAULT_SAVE_DIR = "saves"
USER_CONFIG = "user.config"
DATA_CONFIG = "dataset_info.json"


19
20
def get_save_dir(*args) -> os.PathLike:
    return os.path.join(DEFAULT_SAVE_DIR, *args)
zhaoying1's avatar
zhaoying1 committed
21
22
23
24
25
26
27
28
29
30
31


def get_config_path() -> os.PathLike:
    return os.path.join(DEFAULT_CACHE_DIR, USER_CONFIG)


def load_config() -> Dict[str, Any]:
    try:
        with open(get_config_path(), "r", encoding="utf-8") as f:
            return json.load(f)
    except:
32
        return {"lang": None, "last_model": None, "path_dict": {}, "cache_dir": None}
zhaoying1's avatar
zhaoying1 committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58


def save_config(lang: str, model_name: str, model_path: str) -> None:
    os.makedirs(DEFAULT_CACHE_DIR, exist_ok=True)
    user_config = load_config()
    user_config["lang"] = lang or user_config["lang"]
    if model_name:
        user_config["last_model"] = model_name
        user_config["path_dict"][model_name] = model_path
    with open(get_config_path(), "w", encoding="utf-8") as f:
        json.dump(user_config, f, indent=2, ensure_ascii=False)


def get_model_path(model_name: str) -> str:
    user_config = load_config()
    return user_config["path_dict"].get(model_name, SUPPORTED_MODELS.get(model_name, ""))


def get_template(model_name: str) -> str:
    if model_name.endswith("Chat") and model_name.split("-")[0] in DEFAULT_TEMPLATE:
        return DEFAULT_TEMPLATE[model_name.split("-")[0]]
    return "default"


def list_checkpoint(model_name: str, finetuning_type: str) -> Dict[str, Any]:
    checkpoints = []
59
    save_dir = get_save_dir(model_name, finetuning_type)
zhaoying1's avatar
zhaoying1 committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    if save_dir and os.path.isdir(save_dir):
        for checkpoint in os.listdir(save_dir):
            if (
                os.path.isdir(os.path.join(save_dir, checkpoint))
                and any([
                    os.path.isfile(os.path.join(save_dir, checkpoint, name))
                    for name in (WEIGHTS_NAME, WEIGHTS_INDEX_NAME, PEFT_WEIGHTS_NAME)
                ])
            ):
                checkpoints.append(checkpoint)
    return gr.update(value=[], choices=checkpoints)


def load_dataset_info(dataset_dir: str) -> Dict[str, Any]:
    try:
        with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
            return json.load(f)
    except:
        return {}


81
82
83
def list_dataset(
    dataset_dir: Optional[str] = None, training_stage: Optional[str] = list(TRAINING_STAGES.keys())[0]
) -> Dict[str, Any]:
zhaoying1's avatar
zhaoying1 committed
84
    dataset_info = load_dataset_info(dataset_dir if dataset_dir is not None else DEFAULT_DATA_DIR)
85
86
87
    ranking = TRAINING_STAGES[training_stage] in ["rm", "dpo"]
    datasets = [k for k, v in dataset_info.items() if v.get("ranking", False) == ranking]
    return gr.update(value=[], choices=datasets)