trainer.py 2.5 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
import torch
from collections import defaultdict
from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union
from transformers import BatchEncoding, Trainer
from trl import DPOTrainer
6
# from trl.trainer.utils import disable_dropout_in_model
zhaoying1's avatar
zhaoying1 committed
7
8
9
10
11
12
13

from llmtuner.extras.constants import IGNORE_INDEX

if TYPE_CHECKING:
    from transformers import PreTrainedModel


14
class CustomDPOTrainer(DPOTrainer):
zhaoying1's avatar
zhaoying1 committed
15
16
17

    def __init__(
        self,
18
19
        beta: float,
        model: Union["PreTrainedModel", torch.nn.Module],
zhaoying1's avatar
zhaoying1 committed
20
        ref_model: Optional[Union["PreTrainedModel", torch.nn.Module]] = None,
21
        disable_dropout: Optional[bool] = True,
zhaoying1's avatar
zhaoying1 committed
22
23
        **kwargs
    ):
24
25
26
27
28
        # if disable_dropout:
        #     disable_dropout_in_model(model)
        #     if ref_model is not None:
        #         disable_dropout_in_model(ref_model)

zhaoying1's avatar
zhaoying1 committed
29
30
31
32
        self.ref_model = ref_model
        self.use_dpo_data_collator = True # hack to avoid warning
        self.label_pad_token_id = IGNORE_INDEX
        self.padding_value = 0
33
        self.beta = beta
zhaoying1's avatar
zhaoying1 committed
34
35
        self._stored_metrics = defaultdict(lambda: defaultdict(list))

36
        Trainer.__init__(self, model=model, **kwargs)
zhaoying1's avatar
zhaoying1 committed
37
38
39
40
        if not hasattr(self, "accelerator"):
            raise AttributeError("Please update `transformers`.")

        if ref_model is not None:
41
42
43
44
45
            if self.is_deepspeed_enabled:
                self.ref_model, = self.accelerator._prepare_deepspeed(self.ref_model)
                self.ref_model.eval()
            else:
                self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
zhaoying1's avatar
zhaoying1 committed
46
47
48
49
50
51
52
53

    def concatenated_forward(
        self,
        model: Optional[torch.nn.Module] = None,
        batch: Optional[Dict[str, torch.Tensor]] = None
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
        batch_copied = BatchEncoding({k: v.detach().clone() for k, v in batch.items()}) # avoid error

54
55
56
57
58
        all_logits = model(
            input_ids=batch_copied["input_ids"],
            attention_mask=batch_copied["attention_mask"],
            return_dict=True
        ).logits.to(torch.float32)
zhaoying1's avatar
zhaoying1 committed
59
60
61
62
63
64
65
66
67
68

        all_logps = self._get_batch_logps(
            all_logits,
            batch["labels"],
            average_log_prob=False
        )
        batch_size = batch["input_ids"].size(0) // 2
        chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
        chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
        return chosen_logps, rejected_logps, chosen_logits, rejected_logits