llm.py 16.2 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
import ctypes;
import math
import os;
import threading
from typing import Optional, Tuple, Union, List, Callable, Dict, Any;
6
7
8
9
10
11
12
13
14
15

import platform
if platform.system() == 'Windows':
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "fastllm_tools.dll"))
else:
    fastllm_lib = ctypes.cdll.LoadLibrary(os.path.join(os.path.split(os.path.realpath(__file__))[0], "libfastllm_tools.so"))

fastllm_lib.create_llm_model.argtypes = [ctypes.c_char_p]
fastllm_lib.create_llm_model.restype = ctypes.c_int

zhouxiang's avatar
zhouxiang committed
16
17
18
19
20
21
fastllm_lib.token_decode.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.token_decode.restype = ctypes.c_int

fastllm_lib.token_encode_string.argtypes = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.POINTER(ctypes.c_int)]
fastllm_lib.token_encode_string.restype = ctypes.c_int

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
fastllm_lib.launch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_void_p,
                                                  ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                  ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_logits_llm_model.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.POINTER(ctypes.c_float)]
fastllm_lib.fetch_response_logits_llm_model.restype = ctypes.c_int

fastllm_lib.response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_char_p,
                                               ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                               ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.response_str_llm_model.restype = ctypes.c_char_p

fastllm_lib.launch_response_str_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p,
                                                     ctypes.c_int, ctypes.c_bool, ctypes.c_float, ctypes.c_int,
                                                     ctypes.c_float, ctypes.c_float, ctypes.c_bool]
fastllm_lib.launch_response_str_llm_model.restype = ctypes.c_int

fastllm_lib.fetch_response_str_llm_model.argtypes = [ctypes.c_int, ctypes.c_int]
fastllm_lib.fetch_response_str_llm_model.restype = ctypes.c_char_p

fastllm_lib.make_history_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p, ctypes.c_char_p]
fastllm_lib.make_history_llm_model.restype = ctypes.c_char_p

fastllm_lib.make_input_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_int, ctypes.c_char_p]
fastllm_lib.make_input_llm_model.restype = ctypes.c_char_p

fastllm_lib.add_tokenizer_word_llm_model.argtype = [ctypes.c_int, ctypes.c_char_p, ctypes.c_float, ctypes.c_int]

fastllm_lib.set_device_map.argtype = [ctypes.c_int, ctypes.c_void_p, ctypes.c_char_p, ctypes.c_void_p]

def set_cpu_threads(threads: int):
zhouxiang's avatar
zhouxiang committed
57
    fastllm_lib.set_cpu_threads(threads);
58
59

def get_cpu_threads() -> int:
zhouxiang's avatar
zhouxiang committed
60
    return fastllm_lib.get_cpu_threads();
61
62

def print_ins_info():
zhouxiang's avatar
zhouxiang committed
63
    fastllm_lib.print_cpu_ins();
64
65

def set_cpu_kvcache(cpu_kvcache):
zhouxiang's avatar
zhouxiang committed
66
    fastllm_lib.set_kvcache_in_cpu(ctypes.c_bool(cpu_kvcache));
67
68

def get_cpu_kvcache():
zhouxiang's avatar
zhouxiang committed
69
    return fastllm_lib.get_kvcache_in_cpu();
70
71

def set_cpu_low_mem(low_mem):
zhouxiang's avatar
zhouxiang committed
72
    fastllm_lib.set_cpu_low_mem(ctypes.c_bool(low_mem));
73
74

def get_cpu_low_mem():
zhouxiang's avatar
zhouxiang committed
75
    return fastllm_lib.get_cpu_low_mem();
76
77

def set_device_map(device_map):
zhouxiang's avatar
zhouxiang committed
78
79
    devices = [];
    values = [];
80
    if (isinstance(device_map, str)):
zhouxiang's avatar
zhouxiang committed
81
82
        devices.append(device_map);
        values.append(1);
83
    elif (isinstance(device_map, list)):
zhouxiang's avatar
zhouxiang committed
84
85
        devices = [str(x) for x in device_map];
        values = [1 for x in device_map];
86
    elif (isinstance(device_map, dict)):
zhouxiang's avatar
zhouxiang committed
87
88
        devices = [str(x) for x in device_map.keys()];
        values = [int(device_map[x]) for x in device_map.keys()];
89
    else:
zhouxiang's avatar
zhouxiang committed
90
91
92
93
        print("set_device_map error.");
        return;
    device_str = ''.join(devices);
    device_len = [len(x) for x in devices];
94
95
96
    fastllm_lib.set_device_map(len(device_len),
                               (ctypes.c_int * len(device_len))(*device_len),
                               device_str.encode(),
zhouxiang's avatar
zhouxiang committed
97
                               (ctypes.c_int * len(values))(*values));
98
99
100
def from_hf(model,
            tokenizer = None,
            dtype = "float16"):
zhouxiang's avatar
zhouxiang committed
101
102
    from fastllm_pytools import hf_model;
    return hf_model.create(model, tokenizer, dtype = dtype);
103
104
105
106
107

class model:
    def __init__ (self, path : str,
                  id : int = -99999):
        if (id != -99999):
zhouxiang's avatar
zhouxiang committed
108
            self.model = id;
109
        else:
zhouxiang's avatar
zhouxiang committed
110
111
112
113
114
115
116
117
118
119
120
121
            self.model = fastllm_lib.create_llm_model(path.encode());
        self.direct_query = False;

        # 为了减少重复申请释放buffer对象而使用的线程局部存储区对象池
        self.thread_local_obj = threading.local()
        self.thread_local_obj.tokenizer_encode_string__output_buffer = None
        self.thread_local_obj.tokenizer_decode_token__output_buffer = None

        # tokenizer_decode_token 输出结果的静态缓存,手工触发构建
        # 由于token数量有限且不太多,所以缓存该结果来减少调用较为适合。
        # 不做成自动缓存是为了避免在多线程调用的时候对缓存dict加锁,同时也为不同场景提供选择空间
        self.tokenizer_decode_token_cache = None
122
123
124
125
126

    def get_prompt(self,
                   query: str,
                   history: List[Tuple[str, str]] = None) -> str:
        if (not(history)):
zhouxiang's avatar
zhouxiang committed
127
128
            history = [];
        prompt = "";
129
        for i, (old_query, response) in enumerate(history):
zhouxiang's avatar
zhouxiang committed
130
131
132
            prompt = fastllm_lib.make_history_llm_model(self.model, prompt.encode(), i, old_query.encode(), response.encode()).decode();
        prompt = fastllm_lib.make_input_llm_model(self.model, prompt.encode(), len(history), query.encode()).decode();
        return prompt;
133
134

    def save(self, path : str):
zhouxiang's avatar
zhouxiang committed
135
        fastllm_lib.save_llm_model(self.model, path.encode());
136
137

    def eval(self):
zhouxiang's avatar
zhouxiang committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        pass;

    def build_tokenizer_decode_token_cache(self):
        if self.tokenizer_decode_token_cache is not None:
            return

        cache_dict = dict()
        vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model)
        for token_id in range(vocab_size):
            cache_dict[token_id] = self.tokenizer_decode_token(token_id)

        self.tokenizer_decode_token_cache = cache_dict

    def tokenizer_encode_string(self, content: str) -> List[int]:
        output_buffer_init_len = 1024
        if self.thread_local_obj.tokenizer_encode_string__output_buffer is None:
            self.thread_local_obj.tokenizer_encode_string__output_buffer = (ctypes.c_int * output_buffer_init_len)()

        buffer = self.thread_local_obj.tokenizer_encode_string__output_buffer
        buffer_len = len(buffer)
        result_len = fastllm_lib.token_encode_string(self.model, content.encode(), buffer_len, buffer)
        if result_len > buffer_len:
            if result_len > 10240:
                # 要处理的数据过长,使用一次性的buffer
                temp_buffer = (ctypes.c_int * result_len)()
                ret = fastllm_lib.token_encode_string(self.model, content.encode(), result_len, temp_buffer)
                return [i for i in temp_buffer]
            else:
                # 扩展buffer大小
                new_buffer_len = round(math.ceil(result_len / 1024.0)) * 1024
                buffer = (ctypes.c_int * new_buffer_len)()
                self.thread_local_obj.tokenizer_encode_string__output_buffer = buffer
                result_len = fastllm_lib.token_encode_string(self.model, content.encode(), new_buffer_len, buffer)

        return [buffer[i] for i in range(result_len)]

    def tokenizer_decode_token(self, token_id: int) -> bytes:
        if self.tokenizer_decode_token_cache is not None:
            cache_result = self.tokenizer_decode_token_cache.get(token_id)
            if cache_result is not None:
                return cache_result

        output_buffer_init_len = 256
        if self.thread_local_obj.tokenizer_decode_token__output_buffer is None:
            self.thread_local_obj.tokenizer_decode_token__output_buffer = ctypes.create_string_buffer(output_buffer_init_len)

        buffer = self.thread_local_obj.tokenizer_decode_token__output_buffer
        ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
        if ret > 0:
            # buffer长度不够,扩展buffer大小
            new_buffer_len = round(math.ceil(ret / 16.0)) * 16
            buffer = ctypes.create_string_buffer(new_buffer_len)
            self.thread_local_obj.tokenizer_decode_token__output_buffer = buffer
            ret = fastllm_lib.token_decode(self.model, token_id, len(buffer), buffer)
            assert ret == 0

        buffer_bytes = buffer.raw
        result_len = len(buffer_bytes)
        for i in range(len(buffer_bytes)):
            if buffer_bytes[i] == 0:
                result_len = i
                break
        return buffer_bytes[:result_len]
201
202
203
204
205

    def response_logits(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        tokenizer = None) -> str:
zhouxiang's avatar
zhouxiang committed
206
        prompt = query if self.direct_query else self.get_prompt(query, history);
207
208
209
        if (tokenizer == None):
            handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(1), ctypes.c_bool(False), ctypes.c_float(1), ctypes.c_int(1),
zhouxiang's avatar
zhouxiang committed
210
                                                           ctypes.c_float(1), ctypes.c_float(1), ctypes.c_bool(True));
211
        else:
zhouxiang's avatar
zhouxiang committed
212
            input = tokenizer.encode(prompt);
213
            handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
zhouxiang's avatar
zhouxiang committed
214
215
                                                           1, False, 1, 1, 1, 1, True);
        vocab_size = fastllm_lib.get_tokenizer_vocab_size(self.model);
216
        logits = list(range(vocab_size))
zhouxiang's avatar
zhouxiang committed
217
218
219
        array = (ctypes.c_float * (vocab_size * 4))(*logits);
        ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        out = list(array)[:vocab_size];
220
        while (ret != -1):
zhouxiang's avatar
zhouxiang committed
221
222
            ret = fastllm_lib.fetch_response_logits_llm_model(self.model, handle, array);
        return out;
223
224
225
226
227

    def response(self,
                 query: str,
                 history: List[Tuple[str, str]] = None,
                 max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0) -> str:
zhouxiang's avatar
zhouxiang committed
228
        ret = "";
229
230
231
232
233
234
235
236
        for i in self.stream_response(query = query,
                                      history = history,
                                      max_length = max_length,
                                      do_sample = do_sample,
                                      top_p = top_p, top_k = top_k,
                                      temperature = temperature,
                                      repeat_penalty = repeat_penalty,
                                      one_by_one = True):
zhouxiang's avatar
zhouxiang committed
237
238
            ret += i;
        return ret;
239
240
241
242
243
244

    def stream_response(self,
                        query: str,
                        history: List[Tuple[str, str]] = None,
                        max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                        one_by_one = True):
zhouxiang's avatar
zhouxiang committed
245
        prompt = query if self.direct_query else self.get_prompt(query, history);
246
247
        handle = fastllm_lib.launch_response_str_llm_model(self.model, prompt.encode(),
                                                           ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
zhouxiang's avatar
zhouxiang committed
248
249
250
251
                                                           ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False));
        res = "";
        ret = b'';
        fail_cnt = 0;
252
        while True:
zhouxiang's avatar
zhouxiang committed
253
254
            ret += fastllm_lib.fetch_response_str_llm_model(self.model, handle);
            cur = "";
255
            try:
zhouxiang's avatar
zhouxiang committed
256
257
                cur = ret.decode();
                ret = b'';
258
            except:
zhouxiang's avatar
zhouxiang committed
259
                fail_cnt += 1;
260
                if (fail_cnt == 20):
zhouxiang's avatar
zhouxiang committed
261
                    break;
262
                else:
zhouxiang's avatar
zhouxiang committed
263
264
                    continue;
            fail_cnt = 0;
265
            if (cur == "<flmeos>"):
zhouxiang's avatar
zhouxiang committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
                break;
            if one_by_one:
                yield cur;
            else:
                res += cur;
                yield res;

    def stream_response_raw(self,
                            input_tokens: List[int],
                            max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                            one_by_one = True
                            ):
        handle = fastllm_lib.launch_response_llm_model(self.model, len(input_tokens),
                                                       (ctypes.c_int * len(input_tokens))(*input_tokens),
                                                       ctypes.c_int(max_length), ctypes.c_bool(do_sample), ctypes.c_float(top_p), ctypes.c_int(top_k),
                                                       ctypes.c_float(temperature), ctypes.c_float(repeat_penalty), ctypes.c_bool(False))

        # 可能遇到长尾char需要多个token才能够生成,所以只返回bytes,string.decode策略交给外部
        # 方便统计输出token数量,和控制不完整utf8时候解码的逻辑

        total_bytes = b''
        while True:
            cur_token = fastllm_lib.fetch_response_llm_model(self.model, handle)
            if cur_token == -1:
290
                break
zhouxiang's avatar
zhouxiang committed
291
292
293

            cur_bytes = self.tokenizer_decode_token(cur_token)

294
            if one_by_one:
zhouxiang's avatar
zhouxiang committed
295
                yield cur_bytes
296
            else:
zhouxiang's avatar
zhouxiang committed
297
298
                total_bytes += cur_bytes
                yield total_bytes
299
300
301
302

    def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 8192,
             do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0, **kwargs):
        if (not(history)):
zhouxiang's avatar
zhouxiang committed
303
304
305
            history = [];
        prompt = query if self.direct_query else self.get_prompt(query, history);
        input = tokenizer.encode(prompt);
306
307
        handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                       max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
zhouxiang's avatar
zhouxiang committed
308
                                                       False);
309

zhouxiang's avatar
zhouxiang committed
310
        result = [];
311
        while True:
zhouxiang's avatar
zhouxiang committed
312
            cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
313
            if (cur == -1):
zhouxiang's avatar
zhouxiang committed
314
315
316
317
318
                break;
            result.append(cur);
        response = tokenizer.decode(result);
        history = history + [(query, response)];
        return response, history;
319
320
321
322
323

    def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, past_key_values = None,
                    max_length: int = 8192, do_sample = True, top_p = 0.8, top_k = 1, temperature = 1.0, repeat_penalty = 1.0,
                    return_past_key_values = False, **kwargs) -> str:
        if (not(history)):
zhouxiang's avatar
zhouxiang committed
324
325
326
            history = [];
        prompt = query if self.direct_query else self.get_prompt(query, history);
        input = tokenizer.encode(prompt);
327
328
        handle = fastllm_lib.launch_response_llm_model(self.model, len(input), (ctypes.c_int * len(input))(*input),
                                                       max_length, do_sample, top_p, top_k, temperature, repeat_penalty,
zhouxiang's avatar
zhouxiang committed
329
330
                                                       False);
        tokens = [];
331
        while True:
zhouxiang's avatar
zhouxiang committed
332
            cur = fastllm_lib.fetch_response_llm_model(self.model, handle);
333
            if (cur == -1):
zhouxiang's avatar
zhouxiang committed
334
335
336
337
                break;
            tokens.append(cur);
            response = tokenizer.decode(tokens);
            new_history = history + [(query, response)];
338
            if return_past_key_values:
zhouxiang's avatar
zhouxiang committed
339
                yield response, new_history, None;
340
            else:
zhouxiang's avatar
zhouxiang committed
341
                yield response, new_history;
342
343
344
345
346
347

    def set_adapter(self, name: str):
        fastllm_lib.set_adapter(self.model, str(name).encode())
    
    def disable_adapter(self):
        fastllm_lib.disable_adapter(self.model)