Commit e7456783 authored by zhuwenwen's avatar zhuwenwen
Browse files

add msas args

parent 57bb29ba
......@@ -92,7 +92,7 @@ $DOWNLOAD_DIR/
```bash
./run_monomer.sh
```
单体推理参数说明:download_dir为数据集下载目录,monomer.fasta为推理的单体序列;`--output_dir`为输出目录;`model_names`为推理的模型名称,`--model_preset=monomer`为单体模型配置;`--run_relax=true`为进行relax操作;`--use_gpu_relax=true`为使用gpu进行relax操作(速度更快,但可能不太稳定),`--use_gpu_relax=false`为使用CPU进行relax操作(速度慢,但稳定)。
单体推理参数说明:download_dir为数据集下载目录,monomer.fasta为推理的单体序列;`--output_dir`为输出目录;`model_names`为推理的模型名称,`--model_preset=monomer`为单体模型配置;`--run_relax=true`为进行relax操作;`--use_gpu_relax=true`为使用gpu进行relax操作(速度更快,但可能不太稳定),`--use_gpu_relax=false`为使用CPU进行relax操作(速度慢,但稳定);若添加--use_precomputed_msas=true则可以加载已有的MSAs,否则默认运行MSA工具
### 多体
```bash
......
......@@ -194,18 +194,18 @@ def predict_structure(
# Get features.
t_0 = time.time()
features_output_path = os.path.join(output_dir, 'features.pkl')
if os.path.exists(features_output_path):
feature_dict = pickle.load(open(features_output_path, 'rb'))
# features_output_path = os.path.join(output_dir, 'features.pkl')
# if os.path.exists(features_output_path):
# feature_dict = pickle.load(open(features_output_path, 'rb'))
else:
feature_dict = data_pipeline.process(
input_fasta_path=fasta_path,
msa_output_dir=msa_output_dir)
# else:
feature_dict = data_pipeline.process(
input_fasta_path=fasta_path,
msa_output_dir=msa_output_dir)
timings['features'] = time.time() - t_0
# Write out features as a pickled dictionary.
# features_output_path = os.path.join(output_dir, 'features.pkl')
features_output_path = os.path.join(output_dir, 'features.pkl')
with open(features_output_path, 'wb') as f:
pickle.dump(feature_dict, f, protocol=4)
......
......@@ -2,6 +2,7 @@
python3 run_alphafold.py \
--fasta_paths=monomer.fasta \
--output_dir=./ \
--use_precomputed_msas=false \
--data_dir=$download_dir \
--model_names="model_1" \
--uniref90_database_path=$download_dir/uniref90/uniref90.fasta \
......
......@@ -2,6 +2,7 @@ download_dir=/data/alphafold2
python3 run_alphafold.py \
--fasta_paths=multimer.fasta \
--output_dir=./ \
--use_precomputed_msas=false \
--num_multimer_predictions_per_model=1 \
--data_dir=$download_dir \
--model_names="model_1_multimer_v3" \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment